Effects of passivation configuration and emitter surface doping concentration on polarization-type potential-induced degradation in n-type crystalline-silicon photovoltaic modules

钝化 共发射极 材料科学 兴奋剂 氮化硅 光电子学 晶体硅 极化(电化学) 图层(电子) 纳米技术 化学 物理化学
作者
Seira Yamaguchi,Bas B. Van Aken,Maciej K. Stodolny,J. Löffler,Atsushi Masuda,Keisuke Ohdaira
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:226: 111074-111074 被引量:19
标识
DOI:10.1016/j.solmat.2021.111074
摘要

System voltages can cause significant degradation in photovoltaic modules. Polarization-type potential-induced degradation (PID) is accompanied by decreases in the short-circuit current density and the open-circuit voltage. The system voltage causes a polarization and surface charge accumulation, increasing the interface recombination. The surface passivation and the emitter doping concentration and gradient are considered to have large impacts. However, a systematic study on these effects has not yet been performed. In this paper, the effects of the front surface structure of n-type passivated emitter and rear totally diffused cell modules were investigated by accelerated PID tests. Standard cells with thin silicon dioxide/80-nm silicon nitride (SiNx) antireflection/passivation layers, refractive index (RI) of 2.0, exhibited typical polarization-type PID. Cells with increased RI = 2.4 for the bottom 20-nm SiNx showed no degradation at all. This may be caused by reduced charge accumulation in the SiNx layer near the interface due to the higher electrical conductivity of the Si-rich bottom layer. Secondly, cells with both a highly distorted interface, due to nitrogen insertion in the silicon surface, and an emitter with a high surface doping concentration have excellent resistance to PID. Cells with either the highly distorted interface or the higher emitter-surface doping concentration show no to minor improved resistance to PID. These findings improve the understanding of the effects of the front surface structure of cells on the polarization-type PID and may contribute to the implementation of these measures to reduce PID.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nuyoah完成签到,获得积分10
刚刚
小小花发布了新的文献求助10
刚刚
小米发布了新的文献求助10
刚刚
ywffb发布了新的文献求助10
刚刚
小二郎应助心海采纳,获得10
1秒前
1秒前
医学悍狒关注了科研通微信公众号
2秒前
2秒前
benchow完成签到,获得积分10
3秒前
4秒前
5秒前
耍酷的卿应助愉快的宛儿采纳,获得10
5秒前
Owen应助笑ige采纳,获得10
6秒前
xr完成签到 ,获得积分10
6秒前
6秒前
LSC完成签到,获得积分10
6秒前
7秒前
謓言发布了新的文献求助10
7秒前
sun发布了新的文献求助10
7秒前
星star发布了新的文献求助10
8秒前
Y神完成签到 ,获得积分10
8秒前
柒零七完成签到,获得积分10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
太阳花完成签到,获得积分10
10秒前
SciGPT应助让地球种满香菜采纳,获得10
10秒前
ipomoea97完成签到,获得积分10
11秒前
ywffb完成签到,获得积分10
11秒前
sam完成签到,获得积分10
12秒前
12秒前
momo完成签到,获得积分10
12秒前
我爱科研完成签到,获得积分10
12秒前
13秒前
晚星发布了新的文献求助10
13秒前
njufeng完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
liuz53发布了新的文献求助10
14秒前
健壮的弼完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761761
求助须知:如何正确求助?哪些是违规求助? 5531887
关于积分的说明 15400675
捐赠科研通 4897994
什么是DOI,文献DOI怎么找? 2634640
邀请新用户注册赠送积分活动 1582800
关于科研通互助平台的介绍 1538049