Effects of passivation configuration and emitter surface doping concentration on polarization-type potential-induced degradation in n-type crystalline-silicon photovoltaic modules

钝化 共发射极 材料科学 兴奋剂 氮化硅 光电子学 晶体硅 极化(电化学) 图层(电子) 纳米技术 化学 物理化学
作者
Seira Yamaguchi,Bas B. Van Aken,Maciej K. Stodolny,J. Löffler,Atsushi Masuda,Keisuke Ohdaira
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:226: 111074-111074 被引量:19
标识
DOI:10.1016/j.solmat.2021.111074
摘要

System voltages can cause significant degradation in photovoltaic modules. Polarization-type potential-induced degradation (PID) is accompanied by decreases in the short-circuit current density and the open-circuit voltage. The system voltage causes a polarization and surface charge accumulation, increasing the interface recombination. The surface passivation and the emitter doping concentration and gradient are considered to have large impacts. However, a systematic study on these effects has not yet been performed. In this paper, the effects of the front surface structure of n-type passivated emitter and rear totally diffused cell modules were investigated by accelerated PID tests. Standard cells with thin silicon dioxide/80-nm silicon nitride (SiNx) antireflection/passivation layers, refractive index (RI) of 2.0, exhibited typical polarization-type PID. Cells with increased RI = 2.4 for the bottom 20-nm SiNx showed no degradation at all. This may be caused by reduced charge accumulation in the SiNx layer near the interface due to the higher electrical conductivity of the Si-rich bottom layer. Secondly, cells with both a highly distorted interface, due to nitrogen insertion in the silicon surface, and an emitter with a high surface doping concentration have excellent resistance to PID. Cells with either the highly distorted interface or the higher emitter-surface doping concentration show no to minor improved resistance to PID. These findings improve the understanding of the effects of the front surface structure of cells on the polarization-type PID and may contribute to the implementation of these measures to reduce PID.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猕猴桃完成签到 ,获得积分10
刚刚
康康爱研究完成签到 ,获得积分10
刚刚
一自文又欠完成签到 ,获得积分10
1秒前
ccccccccc123完成签到,获得积分10
2秒前
0109发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
makenemore完成签到,获得积分10
5秒前
abcdqqqqqqqqqqqq完成签到,获得积分10
5秒前
阿鑫完成签到 ,获得积分10
7秒前
小茗同学完成签到,获得积分10
8秒前
几几完成签到,获得积分10
8秒前
凶狠的白桃完成签到 ,获得积分10
9秒前
hhh完成签到,获得积分10
10秒前
领导范儿应助Xiaoyan采纳,获得10
12秒前
想人陪的万言完成签到,获得积分10
13秒前
大气的雁桃完成签到,获得积分10
13秒前
15秒前
小白鸽完成签到,获得积分10
17秒前
jian94完成签到,获得积分10
17秒前
整齐的大开完成签到 ,获得积分0
17秒前
杨帆完成签到,获得积分10
18秒前
慕青应助科研通管家采纳,获得10
19秒前
jyy应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
19秒前
搬砖人完成签到,获得积分10
20秒前
kakakakak发布了新的文献求助10
20秒前
眼睛大的绾绾完成签到 ,获得积分10
22秒前
研友_ndo39L完成签到,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
酷炫的飞阳完成签到,获得积分10
24秒前
小伙子完成签到,获得积分10
26秒前
领导范儿应助shine采纳,获得10
26秒前
先锋老刘001完成签到 ,获得积分10
27秒前
豆kl发布了新的文献求助10
27秒前
徐yy完成签到 ,获得积分10
28秒前
花样年华完成签到,获得积分10
28秒前
ww完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645160
求助须知:如何正确求助?哪些是违规求助? 4767911
关于积分的说明 15026597
捐赠科研通 4803591
什么是DOI,文献DOI怎么找? 2568393
邀请新用户注册赠送积分活动 1525717
关于科研通互助平台的介绍 1485369