Effects of passivation configuration and emitter surface doping concentration on polarization-type potential-induced degradation in n-type crystalline-silicon photovoltaic modules

钝化 共发射极 材料科学 兴奋剂 氮化硅 光电子学 晶体硅 极化(电化学) 图层(电子) 纳米技术 化学 物理化学
作者
Seira Yamaguchi,Bas B. Van Aken,Maciej K. Stodolny,J. Löffler,Atsushi Masuda,Keisuke Ohdaira
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier BV]
卷期号:226: 111074-111074 被引量:19
标识
DOI:10.1016/j.solmat.2021.111074
摘要

System voltages can cause significant degradation in photovoltaic modules. Polarization-type potential-induced degradation (PID) is accompanied by decreases in the short-circuit current density and the open-circuit voltage. The system voltage causes a polarization and surface charge accumulation, increasing the interface recombination. The surface passivation and the emitter doping concentration and gradient are considered to have large impacts. However, a systematic study on these effects has not yet been performed. In this paper, the effects of the front surface structure of n-type passivated emitter and rear totally diffused cell modules were investigated by accelerated PID tests. Standard cells with thin silicon dioxide/80-nm silicon nitride (SiNx) antireflection/passivation layers, refractive index (RI) of 2.0, exhibited typical polarization-type PID. Cells with increased RI = 2.4 for the bottom 20-nm SiNx showed no degradation at all. This may be caused by reduced charge accumulation in the SiNx layer near the interface due to the higher electrical conductivity of the Si-rich bottom layer. Secondly, cells with both a highly distorted interface, due to nitrogen insertion in the silicon surface, and an emitter with a high surface doping concentration have excellent resistance to PID. Cells with either the highly distorted interface or the higher emitter-surface doping concentration show no to minor improved resistance to PID. These findings improve the understanding of the effects of the front surface structure of cells on the polarization-type PID and may contribute to the implementation of these measures to reduce PID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得20
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
追寻老九完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
科研乞丐应助科研通管家采纳,获得20
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
彭于晏应助哇哇哇哇采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
2秒前
3秒前
阿邱完成签到,获得积分10
4秒前
5秒前
666完成签到,获得积分10
5秒前
天天快乐应助Clxzzgzg采纳,获得10
5秒前
研习小弟完成签到,获得积分10
5秒前
Fx完成签到 ,获得积分10
6秒前
研友_8RlQ2n完成签到,获得积分10
7秒前
射天狼发布了新的文献求助10
7秒前
桐桐应助Una采纳,获得10
8秒前
shiyu Fang发布了新的文献求助10
8秒前
jyy发布了新的文献求助20
9秒前
文艺的梦秋完成签到,获得积分10
10秒前
彭于晏应助Master_Ye采纳,获得10
11秒前
12秒前
呆萌的寄翠完成签到,获得积分10
13秒前
15秒前
16秒前
哇哇哇哇发布了新的文献求助10
17秒前
19秒前
jzs完成签到 ,获得积分10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997679
求助须知:如何正确求助?哪些是违规求助? 3537190
关于积分的说明 11270985
捐赠科研通 3276344
什么是DOI,文献DOI怎么找? 1806900
邀请新用户注册赠送积分活动 883582
科研通“疑难数据库(出版商)”最低求助积分说明 809975