Plug-and-Play Image Restoration With Deep Denoiser Prior

去模糊 图像复原 计算机科学 卷积神经网络 水准点(测量) 人工智能 插件 迭代重建 图像(数学) 深度学习 模式识别(心理学) 图像处理 大地测量学 程序设计语言 地理
作者
Kai Zhang,Yawei Li,Wangmeng Zuo,Lei Zhang,Luc Van Gool,Radu Timofte
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (10): 6360-6376 被引量:591
标识
DOI:10.1109/tpami.2021.3088914
摘要

Recent works on plug-and-play image restoration have shown that a denoiser can implicitly serve as the image prior for model-based methods to solve many inverse problems. Such a property induces considerable advantages for plug-and-play image restoration (e.g., integrating the flexibility of model-based method and effectiveness of learning-based methods) when the denoiser is discriminatively learned via deep convolutional neural network (CNN) with large modeling capacity. However, while deeper and larger CNN models are rapidly gaining popularity, existing plug-and-play image restoration hinders its performance due to the lack of suitable denoiser prior. In order to push the limits of plug-and-play image restoration, we set up a benchmark deep denoiser prior by training a highly flexible and effective CNN denoiser. We then plug the deep denoiser prior as a modular part into a half quadratic splitting based iterative algorithm to solve various image restoration problems. We, meanwhile, provide a thorough analysis of parameter setting, intermediate results and empirical convergence to better understand the working mechanism. Experimental results on three representative image restoration tasks, including deblurring, super-resolution and demosaicing, demonstrate that the proposed plug-and-play image restoration with deep denoiser prior not only significantly outperforms other state-of-the-art model-based methods but also achieves competitive or even superior performance against state-of-the-art learning-based methods. The source code is available at https://github.com/cszn/DPIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SibetHu发布了新的文献求助10
刚刚
向晨完成签到,获得积分10
1秒前
无私烤鸡发布了新的文献求助10
1秒前
1秒前
1秒前
笨笨熊发布了新的文献求助10
1秒前
2秒前
香橙发布了新的文献求助10
3秒前
科研通AI5应助DD采纳,获得10
3秒前
fan完成签到,获得积分10
3秒前
5秒前
xiaofeiyan发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
xlp完成签到,获得积分20
7秒前
迅速云朵完成签到,获得积分20
7秒前
Lucas应助qqq采纳,获得10
7秒前
无花果应助石文采纳,获得10
7秒前
飄渺灬风云应助SibetHu采纳,获得10
8秒前
坦率的跳跳糖完成签到 ,获得积分10
8秒前
fan发布了新的文献求助10
9秒前
10秒前
10秒前
聪慧小蝴蝶完成签到,获得积分10
12秒前
12秒前
cc发布了新的文献求助10
12秒前
起风了发布了新的文献求助10
12秒前
英姑应助nana湘采纳,获得10
13秒前
13秒前
13秒前
14秒前
热情的天蓝应助Research采纳,获得10
14秒前
14秒前
香蕉觅云应助文武采纳,获得10
14秒前
小滨发布了新的文献求助10
15秒前
momo发布了新的文献求助10
15秒前
EBA应助kkx采纳,获得10
15秒前
安琦应助kkx采纳,获得10
15秒前
顾矜应助kkx采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744562
求助须知:如何正确求助?哪些是违规求助? 3287474
关于积分的说明 10053819
捐赠科研通 3003660
什么是DOI,文献DOI怎么找? 1649196
邀请新用户注册赠送积分活动 785096
科研通“疑难数据库(出版商)”最低求助积分说明 750946