Multi-view Correlation based Black-box Adversarial Attack for 3D Object Detection

对抗制 点云 计算机科学 激光雷达 人工智能 深度学习 对象(语法) 目标检测 计算机视觉 光学(聚焦) 分割 图像分割 遥感 地理 光学 物理
作者
Bingyu Liu,Yuhong Guo,Jianan Jiang,Jian Tang,Weihong Deng
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 1036-1044 被引量:2
标识
DOI:10.1145/3447548.3467432
摘要

Deep neural networks have made tremendous progress in 3D object detection, which is an important task especially in autonomous driving scenarios. Benefited from the breakthroughs in deep learning and sensor technologies, 3D object detection methods based on different sensors, such as camera and LiDAR, have developed rapidly. Meanwhile, more and more researches notice that the abundant information contained in the multi-view data can be used to obtain more accurate understanding of the 3D surrounding environment. Therefore, many sensor-fusion 3D object detection methods have been proposed. As safety is critical in autonomous driving and the deep neural networks are known to be vulnerable to adversarial examples with visually imperceptible perturbations, it is significant to investigate adversarial attacks for 3D object detection. Recent works have shown that both image-based and LiDAR-based networks can be attacked by the adversarial examples while the attacks to the sensor-fusion models, which tend to be more robust, haven't been studied. To this end, we propose a simple multi-view correlation based adversarial attack method for the camera-LiDAR fusion 3D object detection models and focus on the black-box attack setting which is more practical in real-world systems. Specifically, we first design a generative network to generate image adversarial examples based on an auxiliary image semantic segmentation network. Then, we develop a cross-view perturbation projection method by exploiting the camera-LiDAR correlations to map each image adversarial example to the space of the point cloud data to form the point cloud adversarial examples in the LiDAR view. Extensive experiments on the KITTI dataset demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫咪的撒库拉酱完成签到,获得积分10
刚刚
feijelly完成签到 ,获得积分10
1秒前
调皮的易槐完成签到,获得积分10
1秒前
Summer完成签到,获得积分10
2秒前
cecilycen完成签到,获得积分10
3秒前
宜醉宜游宜睡完成签到,获得积分0
4秒前
李静完成签到,获得积分10
4秒前
Slemon完成签到,获得积分10
4秒前
纯真的元风完成签到,获得积分10
4秒前
于是完成签到,获得积分10
5秒前
WYang完成签到,获得积分10
5秒前
yumemakase完成签到,获得积分10
6秒前
silin完成签到,获得积分10
6秒前
日立天上完成签到,获得积分10
7秒前
HEIKU应助科研通管家采纳,获得20
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
wisdom应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
蝈蝈应助科研通管家采纳,获得10
8秒前
打打应助dada采纳,获得10
8秒前
搜集达人应助dada采纳,获得10
8秒前
Singularity应助dada采纳,获得10
8秒前
爆米花应助dada采纳,获得10
8秒前
wanci应助dada采纳,获得10
8秒前
troubadourelf完成签到,获得积分10
8秒前
你好这位仁兄完成签到,获得积分10
9秒前
wsr完成签到,获得积分10
10秒前
小玲仔完成签到,获得积分10
10秒前
顽固分子完成签到 ,获得积分10
11秒前
刻苦小丸子完成签到,获得积分10
11秒前
Lily完成签到,获得积分10
12秒前
12秒前
Yw_M完成签到,获得积分10
13秒前
简奥斯汀完成签到 ,获得积分10
13秒前
紧张的金毛完成签到,获得积分10
14秒前
Alwaite完成签到 ,获得积分10
15秒前
甜蜜的阳光完成签到 ,获得积分10
15秒前
寒冷的世界完成签到 ,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134153
求助须知:如何正确求助?哪些是违规求助? 2785006
关于积分的说明 7769763
捐赠科研通 2440543
什么是DOI,文献DOI怎么找? 1297440
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792