亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning

医学 体内 多中心研究 机器学习 泌尿系统 内科学 计算机科学 泌尿科 医学物理学 人工智能 病理 生物 生物技术 随机对照试验
作者
Junjiong Zheng,Hao Yu,Jesur Batur,Zhenfeng Shi,Aierken Tuerxun,Abudukeyoumu Abulajiang,Sihong Lu,Jianqiu Kong,Lifang Huang,Shaoxu Wu,Zhuo Wu,Ya Qiu,Tianxin Lin,Xiaoguang Zou
出处
期刊:Kidney International [Elsevier]
卷期号:100 (4): 870-880 被引量:62
标识
DOI:10.1016/j.kint.2021.05.031
摘要

Urolithiasis is a common urological disease, and treatment strategy options vary between different stone types. However, accurate detection of stone composition can only be performed in vitro. The management of infection stones is particularly challenging with yet no effective approach to pre-operatively identify infection stones from non-infection stones. Therefore, we aimed to develop a radiomic model for preoperatively identifying infection stones with multicenter validation. In total, 1198 eligible patients with urolithiasis from three centers were divided into a training set, an internal validation set, and two external validation sets. Stone composition was determined by Fourier transform infrared spectroscopy. A total of 1316 radiomic features were extracted from the pre-treatment Computer Tomography images of each patient. Using the least absolute shrinkage and selection operator algorithm, we identified a radiomic signature that achieved favorable discrimination in the training set, which was confirmed in the validation sets. Moreover, we then developed a radiomic model incorporating the radiomic signature, urease-producing bacteria in urine, and urine pH based on multivariate logistic regression analysis. The nomogram showed favorable calibration and discrimination in the training and three validation sets (area under the curve [95% confidence interval], 0.898 [0.840-0.956], 0.832 [0.742-0.923], 0.825 [0.783-0.866], and 0.812 [0.710-0.914], respectively). Decision curve analysis demonstrated the clinical utility of the radiomic model. Thus, our proposed radiomic model can serve as a non-invasive tool to identify urinary infection stones in vivo, which may optimize disease management in urolithiasis and improve patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luobo123完成签到 ,获得积分10
9秒前
27秒前
葫芦侠完成签到,获得积分20
41秒前
42秒前
葫芦侠发布了新的文献求助10
1分钟前
隐形曼青应助H_W采纳,获得10
1分钟前
Derrick完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
辣酒猫发布了新的文献求助10
1分钟前
Baboon发布了新的文献求助10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
H_W发布了新的文献求助10
1分钟前
2分钟前
不打烊吗发布了新的文献求助10
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
null完成签到,获得积分0
2分钟前
赘婿应助H_W采纳,获得10
2分钟前
科研通AI6应助符符采纳,获得10
2分钟前
2分钟前
H_W发布了新的文献求助10
2分钟前
2分钟前
Akim应助H_W采纳,获得10
3分钟前
3分钟前
moodlunatic发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
moodlunatic完成签到,获得积分20
3分钟前
yang发布了新的文献求助10
3分钟前
H_W发布了新的文献求助10
3分钟前
3分钟前
acd发布了新的文献求助10
4分钟前
符符发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658030
求助须知:如何正确求助?哪些是违规求助? 4816482
关于积分的说明 15080823
捐赠科研通 4816367
什么是DOI,文献DOI怎么找? 2577299
邀请新用户注册赠送积分活动 1532309
关于科研通互助平台的介绍 1490932