A multicenter study to develop a non-invasive radiomic model to identify urinary infection stone in vivo using machine-learning

列线图 医学 置信区间 逻辑回归 曲线下面积 泌尿系统 内科学 泌尿科 放射科
作者
Junjiong Zheng,Hao Yu,Jesur Batur,Zhenfeng Shi,Aierken Tuerxun,Abudukeyoumu Abulajiang,Sihong Lu,Jianqiu Kong,Lifang Huang,Shaoxu Wu,Zhuo Wu,Ya Qiu,Tianxin Lin,Xiaoguang Zou
出处
期刊:Kidney International [Elsevier]
卷期号:100 (4): 870-880 被引量:37
标识
DOI:10.1016/j.kint.2021.05.031
摘要

Urolithiasis is a common urological disease, and treatment strategy options vary between different stone types. However, accurate detection of stone composition can only be performed in vitro. The management of infection stones is particularly challenging with yet no effective approach to pre-operatively identify infection stones from non-infection stones. Therefore, we aimed to develop a radiomic model for preoperatively identifying infection stones with multicenter validation. In total, 1198 eligible patients with urolithiasis from three centers were divided into a training set, an internal validation set, and two external validation sets. Stone composition was determined by Fourier transform infrared spectroscopy. A total of 1316 radiomic features were extracted from the pre-treatment Computer Tomography images of each patient. Using the least absolute shrinkage and selection operator algorithm, we identified a radiomic signature that achieved favorable discrimination in the training set, which was confirmed in the validation sets. Moreover, we then developed a radiomic model incorporating the radiomic signature, urease-producing bacteria in urine, and urine pH based on multivariate logistic regression analysis. The nomogram showed favorable calibration and discrimination in the training and three validation sets (area under the curve [95% confidence interval], 0.898 [0.840-0.956], 0.832 [0.742-0.923], 0.825 [0.783-0.866], and 0.812 [0.710-0.914], respectively). Decision curve analysis demonstrated the clinical utility of the radiomic model. Thus, our proposed radiomic model can serve as a non-invasive tool to identify urinary infection stones in vivo, which may optimize disease management in urolithiasis and improve patient prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张慧发布了新的文献求助10
刚刚
刚刚
1秒前
shizhiying完成签到,获得积分10
1秒前
细心的荧荧完成签到 ,获得积分10
1秒前
科研小刘发布了新的文献求助10
2秒前
云出发布了新的文献求助10
2秒前
研友_VZG7GZ应助小晋采纳,获得10
3秒前
星辰大海应助细心的语蓉采纳,获得10
3秒前
华仔应助甜甜圈采纳,获得10
4秒前
半眠日记完成签到,获得积分20
4秒前
华仔应助迪迦采纳,获得10
5秒前
搜集达人应助yang采纳,获得10
5秒前
zyy完成签到,获得积分10
5秒前
6秒前
7秒前
jerry完成签到,获得积分10
7秒前
赘婿应助十字勋章采纳,获得10
7秒前
小蘑菇应助yaoguang采纳,获得10
7秒前
8秒前
8秒前
8秒前
zyy发布了新的文献求助30
9秒前
FashionBoy应助自由冰巧采纳,获得10
10秒前
科研顺利完成签到 ,获得积分10
10秒前
今后应助伶俐的铁身采纳,获得10
10秒前
Singularity应助stop here采纳,获得10
10秒前
Anxietymaker完成签到,获得积分10
11秒前
希望天下0贩的0应助CC采纳,获得10
11秒前
11秒前
Owen应助云出采纳,获得10
11秒前
12秒前
柚子完成签到,获得积分10
12秒前
整齐尔容完成签到,获得积分20
12秒前
12秒前
科研通AI2S应助高等数学采纳,获得10
13秒前
ssc给ssc的求助进行了留言
13秒前
朴素笑南发布了新的文献求助10
13秒前
14秒前
ferritin完成签到 ,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135702
求助须知:如何正确求助?哪些是违规求助? 2786585
关于积分的说明 7778267
捐赠科研通 2442686
什么是DOI,文献DOI怎么找? 1298616
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866