亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tolerating Data Missing in Breast Cancer Diagnosis from Clinical Ultrasound Reports via Knowledge Graph Inference

缺少数据 计算机科学 推论 原始数据 嵌入 编码器 图形 数据挖掘 人工智能 机器学习 理论计算机科学 操作系统 程序设计语言
作者
Jianing Xi,Liping Ye,Qinghua Huang,Xuelong Li
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 3756-3764 被引量:22
标识
DOI:10.1145/3447548.3467106
摘要

Medical diagnosis through artificial intelligence has been drawing increasing attention currently. For breast lesions, the clinical ultrasound reports are the most commonly used data in the diagnosis of breast cancer. Nevertheless, the input reports always encounter the inevitable issue of data missing. Unfortunately, despite the efforts made in previous approaches that made progress on tackling data imprecision, nearly all of these approaches cannot accept inputs with data missing. A common way to alleviate the data missing issue is to fill the missing values with artificial data. However, the data filling strategy actually brings in additional noises that do not exist in the raw data. Inspired by the advantage of open world assumption, we regard the missing data in clinical ultrasound reports as non-observed terms of facts, and propose a Knowledge Graph embedding based model KGSeD with the capability of tolerating data missing, which can successfully circumvent the pollution caused by data filling. Our KGSeD is designed via an encoder-decoder framework, where the encoder incorporates structural information of the graph via embedding, and the decoder diagnose patients by inferring their links to clinical outcomes. Comparative experiments show that KGSeD achieves noticeable diagnosis performances. When data missing occurred, KGSeD yields the most stable performance over those of existing approaches, showing better tolerance to data missing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶斯发布了新的文献求助10
3秒前
6秒前
TingtingGZ发布了新的文献求助10
11秒前
荼蘼完成签到,获得积分20
11秒前
汉堡包应助耶斯采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Chloe应助科研通管家采纳,获得10
1分钟前
1分钟前
十三发布了新的文献求助10
1分钟前
城南花已开完成签到,获得积分10
1分钟前
科研通AI5应助十三采纳,获得30
1分钟前
花花完成签到 ,获得积分10
1分钟前
十三完成签到,获得积分20
1分钟前
火星上的博涛完成签到,获得积分20
2分钟前
穆振家完成签到,获得积分10
2分钟前
king完成签到 ,获得积分10
2分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI6应助勤劳初雪采纳,获得10
3分钟前
浮游应助勤劳初雪采纳,获得10
3分钟前
女爰舍予完成签到 ,获得积分10
3分钟前
李健应助勤劳初雪采纳,获得10
3分钟前
予秋发布了新的文献求助10
4分钟前
4分钟前
4分钟前
勤劳初雪完成签到 ,获得积分10
4分钟前
予秋发布了新的文献求助10
4分钟前
丘比特应助隐形的小刺猬采纳,获得10
4分钟前
4分钟前
AS发布了新的文献求助10
4分钟前
Chloe应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
柠檬完成签到,获得积分10
5分钟前
AS完成签到,获得积分10
5分钟前
完美世界应助TingtingGZ采纳,获得10
6分钟前
6分钟前
TingtingGZ发布了新的文献求助10
6分钟前
lifenghou完成签到 ,获得积分10
7分钟前
Chloe应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900728
求助须知:如何正确求助?哪些是违规求助? 4180509
关于积分的说明 12976906
捐赠科研通 3945262
什么是DOI,文献DOI怎么找? 2164035
邀请新用户注册赠送积分活动 1182326
关于科研通互助平台的介绍 1088546