Tolerating Data Missing in Breast Cancer Diagnosis from Clinical Ultrasound Reports via Knowledge Graph Inference

缺少数据 计算机科学 推论 原始数据 嵌入 编码器 图形 数据挖掘 人工智能 机器学习 理论计算机科学 操作系统 程序设计语言
作者
Jianing Xi,Liping Ye,Qinghua Huang,Xuelong Li
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 3756-3764 被引量:22
标识
DOI:10.1145/3447548.3467106
摘要

Medical diagnosis through artificial intelligence has been drawing increasing attention currently. For breast lesions, the clinical ultrasound reports are the most commonly used data in the diagnosis of breast cancer. Nevertheless, the input reports always encounter the inevitable issue of data missing. Unfortunately, despite the efforts made in previous approaches that made progress on tackling data imprecision, nearly all of these approaches cannot accept inputs with data missing. A common way to alleviate the data missing issue is to fill the missing values with artificial data. However, the data filling strategy actually brings in additional noises that do not exist in the raw data. Inspired by the advantage of open world assumption, we regard the missing data in clinical ultrasound reports as non-observed terms of facts, and propose a Knowledge Graph embedding based model KGSeD with the capability of tolerating data missing, which can successfully circumvent the pollution caused by data filling. Our KGSeD is designed via an encoder-decoder framework, where the encoder incorporates structural information of the graph via embedding, and the decoder diagnose patients by inferring their links to clinical outcomes. Comparative experiments show that KGSeD achieves noticeable diagnosis performances. When data missing occurred, KGSeD yields the most stable performance over those of existing approaches, showing better tolerance to data missing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
武紫安完成签到,获得积分10
1秒前
2秒前
清韵微风发布了新的文献求助10
4秒前
老高发布了新的文献求助10
5秒前
5秒前
ztt完成签到,获得积分10
6秒前
8秒前
8秒前
许迪发布了新的文献求助30
8秒前
9秒前
parpate发布了新的文献求助10
9秒前
10秒前
Stacey完成签到,获得积分10
11秒前
张起灵完成签到,获得积分10
11秒前
13秒前
13秒前
阅读文献发布了新的文献求助10
14秒前
共享精神应助孙勇发采纳,获得10
16秒前
优雅莞发布了新的文献求助10
17秒前
斯文败类应助如常采纳,获得10
17秒前
向阳发布了新的文献求助10
18秒前
11发布了新的文献求助10
19秒前
20秒前
砰砰彭发布了新的文献求助20
21秒前
爆米花应助王多肉采纳,获得10
22秒前
山南驳回了打打应助
24秒前
Chaos完成签到,获得积分10
24秒前
24秒前
遇上就这样吧应助kento采纳,获得50
25秒前
26秒前
26秒前
27秒前
28秒前
梨花月应助司空元正采纳,获得10
28秒前
29秒前
学fei了吗完成签到,获得积分10
29秒前
11完成签到,获得积分10
31秒前
31秒前
浮游应助咿呀呀采纳,获得10
31秒前
孙勇发发布了新的文献求助10
32秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135008
求助须知:如何正确求助?哪些是违规求助? 4335582
关于积分的说明 13507290
捐赠科研通 4173211
什么是DOI,文献DOI怎么找? 2288286
邀请新用户注册赠送积分活动 1289005
关于科研通互助平台的介绍 1230049