Tolerating Data Missing in Breast Cancer Diagnosis from Clinical Ultrasound Reports via Knowledge Graph Inference

缺少数据 计算机科学 推论 原始数据 嵌入 编码器 图形 数据挖掘 人工智能 机器学习 理论计算机科学 操作系统 程序设计语言
作者
Jianing Xi,Liping Ye,Qinghua Huang,Xuelong Li
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 3756-3764 被引量:22
标识
DOI:10.1145/3447548.3467106
摘要

Medical diagnosis through artificial intelligence has been drawing increasing attention currently. For breast lesions, the clinical ultrasound reports are the most commonly used data in the diagnosis of breast cancer. Nevertheless, the input reports always encounter the inevitable issue of data missing. Unfortunately, despite the efforts made in previous approaches that made progress on tackling data imprecision, nearly all of these approaches cannot accept inputs with data missing. A common way to alleviate the data missing issue is to fill the missing values with artificial data. However, the data filling strategy actually brings in additional noises that do not exist in the raw data. Inspired by the advantage of open world assumption, we regard the missing data in clinical ultrasound reports as non-observed terms of facts, and propose a Knowledge Graph embedding based model KGSeD with the capability of tolerating data missing, which can successfully circumvent the pollution caused by data filling. Our KGSeD is designed via an encoder-decoder framework, where the encoder incorporates structural information of the graph via embedding, and the decoder diagnose patients by inferring their links to clinical outcomes. Comparative experiments show that KGSeD achieves noticeable diagnosis performances. When data missing occurred, KGSeD yields the most stable performance over those of existing approaches, showing better tolerance to data missing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙心完成签到,获得积分0
刚刚
喻鞅完成签到,获得积分0
刚刚
赘婿应助无奈可仁采纳,获得10
刚刚
往返自然完成签到,获得积分10
刚刚
张雯雯完成签到,获得积分10
刚刚
Eternity发布了新的文献求助10
刚刚
碧蓝柠檬完成签到,获得积分10
1秒前
顾耷完成签到,获得积分10
1秒前
1秒前
开心小猪完成签到,获得积分10
1秒前
田様应助luojimao采纳,获得10
2秒前
codwest发布了新的文献求助10
2秒前
yori发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
liuhaha完成签到,获得积分10
4秒前
爆米花应助潘Pan采纳,获得30
4秒前
娶个名字好难呀完成签到 ,获得积分10
4秒前
科研通AI6应助往返自然采纳,获得30
5秒前
xy_009721完成签到,获得积分10
5秒前
5秒前
bkagyin应助will采纳,获得10
6秒前
6秒前
ioi完成签到,获得积分20
7秒前
思源应助momo采纳,获得10
7秒前
开朗洋葱完成签到,获得积分20
7秒前
gk完成签到,获得积分0
7秒前
彭于晏应助温曈采纳,获得10
7秒前
Ava应助zhuchunjie采纳,获得10
7秒前
7秒前
8秒前
Frank应助852采纳,获得10
8秒前
科研通AI6应助Wenroy采纳,获得10
8秒前
9秒前
9秒前
Akari完成签到,获得积分10
9秒前
esfrg完成签到,获得积分10
10秒前
boyue完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434707
求助须知:如何正确求助?哪些是违规求助? 4547028
关于积分的说明 14205727
捐赠科研通 4467036
什么是DOI,文献DOI怎么找? 2448402
邀请新用户注册赠送积分活动 1439329
关于科研通互助平台的介绍 1416068