热电效应
无定形固体
材料科学
晶体结构
正交晶系
Crystal(编程语言)
对偶(序理论)
功勋
背景(考古学)
凝聚态物理
结晶学
矿物学
热力学
物理
化学
光电子学
数学
计算机科学
古生物学
离散数学
生物
程序设计语言
作者
Kunpeng Zhao,Espen Z. Eikeland,Dongsheng He,Wujie Qiu,Zhicheng Jin,Qingfeng Song,Tian‐Ran Wei,Pengfei Qiu,Jianjun Liu,Jiaqing He,Bo B. Iversen,Jian He,Lidong Chen,Xun Shi
出处
期刊:Joule
[Elsevier]
日期:2021-04-19
卷期号:5 (5): 1183-1195
被引量:49
标识
DOI:10.1016/j.joule.2021.03.012
摘要
Summary Discovering novel materials and attaining higher performance are the eternal pursuit of thermoelectric materials research. Here, we report a material series, (Cu1−xAgx)2(Te1−ySy) (0.16 ≤ x ≤ 0.24, 0.16 ≤ y ≤ 0.24), which adopts a complex orthorhombic structure differing from any known crystal structure of (Cu/Ag)2(S/Te). This material series is featured by the crystal-amorphicity duality induced by the large anionic size mismatch: a crystalline sublattice of highly size-mismatched anions Te/S coexists with an amorphous-like sublattice of cations Cu/Ag. In the context of structure-property correlation, the crystal-amorphicity duality gave rise to not only interesting electrical properties but also exceptionally low lattice thermal conductivities from 300 to 1,000 K. A state-of-the-art figure of merit zT of 2.0 is obtained in the x = y = 0.22 sample at 1,000 K. These results give insights into crystal-amorphicity duality as a paradigm-shifting materials design approach to develop high-performance thermoelectric materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI