已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A layer-by-layer quality monitoring framework for 3D printing

EWMA图表 控制图 统计过程控制 图层(电子) 计算机科学 过程(计算) 大规模定制 人工智能 像素 自动化 逐层 质量(理念) 工程类 工程制图
作者
Mohammad Najjartabar Bisheh,Shing I. Chang,Shuting Lei
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:157: 107314-107314 被引量:6
标识
DOI:10.1016/j.cie.2021.107314
摘要

• Layer-by-layer process monitoring automating 3D printing quality check. • Self-Start control charts starting after two successful printed parts. • Machine learning algorithms implemented for image preprocessing. • Clustering and ARIMA filtering methods used to form homogeneous charting families. • EWMA control charts for image-based quality monitoring. Technology development in additive manufacturing is accelerating transition from mass production to mass customization. In this transition, automation in all stages of production including quality control is a key. In this study, a layer-wise framework is proposed to monitor quality of 3D printing parts based on top-view images. The proposed statistical process monitoring method starts with self-start control charts that require only two successful initial prints. Answering the challenges of image processing due to lighting, a Machine Learning (ML) method is adopted to separate each layer from the printing bed. A sample image is compared to the standard image from a good part at each layer. The number of pixels in the difference images is fed into the proposed control charts to monitor printing process at each layer. An Exponentially Weighted Moving Average (EWMA) chart based on the number of pixels is used for process monitoring at each layer. Once enough parts have been printed, homogeneous layers are clustered to reduce the number of control charts needed for process monitoring. Experimental results based on a 3-inch diameter basket part show that the proposed framework based on continuously monitoring of layer-by-layer images is able of detecting small changes in printing process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助Rafayel采纳,获得10
2秒前
KingWave完成签到,获得积分10
2秒前
ljy完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
神经蛙发布了新的文献求助10
5秒前
千陽完成签到 ,获得积分10
5秒前
5秒前
梦里花落声应助KingWave采纳,获得10
6秒前
rosyw完成签到,获得积分10
7秒前
7秒前
7秒前
yijing关注了科研通微信公众号
7秒前
7秒前
jia8530完成签到 ,获得积分10
8秒前
顾末完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
H恺发布了新的文献求助10
10秒前
11秒前
豆豆完成签到 ,获得积分10
12秒前
草木完成签到 ,获得积分10
12秒前
江树远完成签到 ,获得积分10
12秒前
Jemma发布了新的文献求助10
13秒前
ljy发布了新的文献求助10
14秒前
大模型应助最蠢的讨厌鬼采纳,获得10
14秒前
14秒前
ding应助H恺采纳,获得10
15秒前
青山语发布了新的文献求助10
15秒前
Criminology34应助一车童心采纳,获得30
18秒前
石东明完成签到 ,获得积分10
19秒前
19秒前
不秃不秃完成签到 ,获得积分10
19秒前
ROGE R完成签到,获得积分10
21秒前
22秒前
22秒前
糖糖完成签到,获得积分20
23秒前
Mic应助发家致富的Eric采纳,获得10
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443466
求助须知:如何正确求助?哪些是违规求助? 4553318
关于积分的说明 14241555
捐赠科研通 4474980
什么是DOI,文献DOI怎么找? 2452187
邀请新用户注册赠送积分活动 1443137
关于科研通互助平台的介绍 1418774