A layer-by-layer quality monitoring framework for 3D printing

EWMA图表 控制图 统计过程控制 图层(电子) 计算机科学 过程(计算) 大规模定制 人工智能 像素 自动化 逐层 质量(理念) 工程类 工程制图
作者
Mohammad Najjartabar Bisheh,Shing I. Chang,Shuting Lei
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:157: 107314-107314 被引量:6
标识
DOI:10.1016/j.cie.2021.107314
摘要

• Layer-by-layer process monitoring automating 3D printing quality check. • Self-Start control charts starting after two successful printed parts. • Machine learning algorithms implemented for image preprocessing. • Clustering and ARIMA filtering methods used to form homogeneous charting families. • EWMA control charts for image-based quality monitoring. Technology development in additive manufacturing is accelerating transition from mass production to mass customization. In this transition, automation in all stages of production including quality control is a key. In this study, a layer-wise framework is proposed to monitor quality of 3D printing parts based on top-view images. The proposed statistical process monitoring method starts with self-start control charts that require only two successful initial prints. Answering the challenges of image processing due to lighting, a Machine Learning (ML) method is adopted to separate each layer from the printing bed. A sample image is compared to the standard image from a good part at each layer. The number of pixels in the difference images is fed into the proposed control charts to monitor printing process at each layer. An Exponentially Weighted Moving Average (EWMA) chart based on the number of pixels is used for process monitoring at each layer. Once enough parts have been printed, homogeneous layers are clustered to reduce the number of control charts needed for process monitoring. Experimental results based on a 3-inch diameter basket part show that the proposed framework based on continuously monitoring of layer-by-layer images is able of detecting small changes in printing process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇宙中心发布了新的文献求助10
刚刚
小蘑菇应助吕方采纳,获得10
刚刚
夙夙发布了新的文献求助10
1秒前
TP完成签到,获得积分10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得20
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得30
2秒前
916应助科研通管家采纳,获得10
2秒前
Bio应助felix采纳,获得50
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Bio应助科研通管家采纳,获得10
2秒前
GEeZiii发布了新的文献求助10
2秒前
916应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
ED应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
lucyliu完成签到 ,获得积分10
2秒前
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得20
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
NameSL完成签到,获得积分10
4秒前
俏皮的匕完成签到,获得积分10
4秒前
Fonseca发布了新的文献求助10
5秒前
Mollyshimmer完成签到 ,获得积分10
5秒前
吉以寒完成签到,获得积分10
5秒前
marson发布了新的文献求助10
6秒前
6秒前
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650