A layer-by-layer quality monitoring framework for 3D printing

EWMA图表 控制图 统计过程控制 图层(电子) 计算机科学 过程(计算) 大规模定制 人工智能 像素 自动化 逐层 质量(理念) 工程类 工程制图
作者
Mohammad Najjartabar Bisheh,Shing I. Chang,Shuting Lei
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:157: 107314-107314 被引量:6
标识
DOI:10.1016/j.cie.2021.107314
摘要

• Layer-by-layer process monitoring automating 3D printing quality check. • Self-Start control charts starting after two successful printed parts. • Machine learning algorithms implemented for image preprocessing. • Clustering and ARIMA filtering methods used to form homogeneous charting families. • EWMA control charts for image-based quality monitoring. Technology development in additive manufacturing is accelerating transition from mass production to mass customization. In this transition, automation in all stages of production including quality control is a key. In this study, a layer-wise framework is proposed to monitor quality of 3D printing parts based on top-view images. The proposed statistical process monitoring method starts with self-start control charts that require only two successful initial prints. Answering the challenges of image processing due to lighting, a Machine Learning (ML) method is adopted to separate each layer from the printing bed. A sample image is compared to the standard image from a good part at each layer. The number of pixels in the difference images is fed into the proposed control charts to monitor printing process at each layer. An Exponentially Weighted Moving Average (EWMA) chart based on the number of pixels is used for process monitoring at each layer. Once enough parts have been printed, homogeneous layers are clustered to reduce the number of control charts needed for process monitoring. Experimental results based on a 3-inch diameter basket part show that the proposed framework based on continuously monitoring of layer-by-layer images is able of detecting small changes in printing process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精神小伙发布了新的文献求助50
刚刚
刚刚
科研小白发布了新的文献求助10
1秒前
white发布了新的文献求助10
1秒前
挽秋发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
4秒前
4秒前
在水一方应助念初采纳,获得10
4秒前
5秒前
5秒前
Xiaofeng关注了科研通微信公众号
6秒前
wmt完成签到,获得积分10
7秒前
传奇3应助咔咔咔采纳,获得10
7秒前
7秒前
7秒前
tdtk发布了新的文献求助20
8秒前
WuzJ1ee完成签到,获得积分20
8秒前
科研通AI6应助追寻的宛er采纳,获得10
8秒前
9秒前
储物间完成签到,获得积分10
9秒前
9秒前
hdbys发布了新的文献求助30
9秒前
9秒前
RNNNLL完成签到,获得积分10
10秒前
12秒前
12秒前
12秒前
长夜变清早完成签到,获得积分10
12秒前
12秒前
zgd发布了新的文献求助10
12秒前
在水一方应助sos采纳,获得10
12秒前
嘻嘻发布了新的文献求助10
12秒前
谷雨秋发布了新的文献求助10
15秒前
15秒前
任性的梦菲完成签到,获得积分10
16秒前
17秒前
今后应助张雯雯采纳,获得10
17秒前
量子星尘发布了新的文献求助80
18秒前
Ai77发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871