Effective phase retrieval of sparse signals with convergence guarantee

相位恢复 趋同(经济学) 计算机科学 数学优化 算法 相(物质) 数学 物理 经济增长 量子力学 傅里叶变换 数学分析 经济
作者
Li Ji
出处
期刊:Signal Processing [Elsevier]
卷期号:192: 108388-108388 被引量:2
标识
DOI:10.1016/j.sigpro.2021.108388
摘要

• Develop an effective and efficient ADMM solver for sparse phase retrieval with convergence guarantee. • Though the problem is nonconvex, the solver numerically solves it without requirement of good initialization. • The solver outperforms existing solvers in terms of the required measurement complexity. Phase retrieval, as a representative nonlinear inverse problem, is of increasing interest recently for its broad applications in imaging and engineering. Prediction of the signal amounts to solving a nonconvex optimization problem, which is generally NP-hard to solve. Collecting more measurements or providing prior information of the unknown are two often-seen strategies to facilitate the problem. In this paper, we propose an efficient and effective algorithm to solve phase retrieval with certain prior of the signal, in particular the signal itself is sparse in the natural basis. By formulating phase retrieval (PR) problem in the splitting form, we propose ADMM (alternating direction method of multipliers) with convergence guarantee to tackle the resulting nonconvex problem. Even though the algorithm is not new and there also exist several works on the convergence of ADMM, we clarify that our formulation for phase retrieval is not a specific application example of their investigated models. Hence, we investigate the convergence of our algorithm and show that ADMM converges a stationary point when penalty parameter ρ is large enough. It is observed that the recovery performance degrades when the penalty parameter increases. For better performance, we propose a practical scheme of tuning the penalty parameter ρ . Demonstration of the superior recovery performance on sparse phase retrieval (SPR) is conducted and it shows that our method numerically infers near-exact solution without providing good initialization. Our proposed method distinguishes itself from other existing competitive algorithms in two aspects: (a) the initialization is much less crucial for the algorithmic success than other compared methods; (b) the sampling complexity for the phase transition of recovery is much markedly reduced than other existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助zyy采纳,获得10
刚刚
Yogita发布了新的文献求助10
1秒前
自信鞯完成签到,获得积分10
2秒前
2秒前
3秒前
SmileAlway完成签到,获得积分10
3秒前
3秒前
3秒前
熊熊完成签到,获得积分10
4秒前
tao完成签到,获得积分10
4秒前
5秒前
乐乐应助轩辕忆枫采纳,获得200
6秒前
小高同学发布了新的文献求助10
6秒前
刘静完成签到,获得积分10
7秒前
大个应助luo采纳,获得10
7秒前
SmileAlway发布了新的文献求助10
7秒前
8秒前
tao发布了新的文献求助10
8秒前
8秒前
zhenxing发布了新的文献求助10
8秒前
9秒前
NexusExplorer应助小高同学采纳,获得10
10秒前
12秒前
Hu完成签到,获得积分10
13秒前
13秒前
专注的问筠完成签到,获得积分10
14秒前
zyy发布了新的文献求助10
14秒前
上官若男应助123采纳,获得10
14秒前
14秒前
OhoOu完成签到 ,获得积分10
15秒前
kimi_saigou发布了新的文献求助30
17秒前
18秒前
李健应助fbbggb采纳,获得20
19秒前
sanben完成签到,获得积分10
19秒前
hezi完成签到,获得积分10
21秒前
成功发论文完成签到,获得积分10
22秒前
李子完成签到,获得积分10
22秒前
24秒前
青柠完成签到,获得积分10
24秒前
24秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046