清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Effective phase retrieval of sparse signals with convergence guarantee

相位恢复 趋同(经济学) 计算机科学 数学优化 算法 相(物质) 数学 物理 经济增长 傅里叶变换 数学分析 量子力学 经济
作者
Li Ji
出处
期刊:Signal Processing [Elsevier]
卷期号:192: 108388-108388 被引量:2
标识
DOI:10.1016/j.sigpro.2021.108388
摘要

• Develop an effective and efficient ADMM solver for sparse phase retrieval with convergence guarantee. • Though the problem is nonconvex, the solver numerically solves it without requirement of good initialization. • The solver outperforms existing solvers in terms of the required measurement complexity. Phase retrieval, as a representative nonlinear inverse problem, is of increasing interest recently for its broad applications in imaging and engineering. Prediction of the signal amounts to solving a nonconvex optimization problem, which is generally NP-hard to solve. Collecting more measurements or providing prior information of the unknown are two often-seen strategies to facilitate the problem. In this paper, we propose an efficient and effective algorithm to solve phase retrieval with certain prior of the signal, in particular the signal itself is sparse in the natural basis. By formulating phase retrieval (PR) problem in the splitting form, we propose ADMM (alternating direction method of multipliers) with convergence guarantee to tackle the resulting nonconvex problem. Even though the algorithm is not new and there also exist several works on the convergence of ADMM, we clarify that our formulation for phase retrieval is not a specific application example of their investigated models. Hence, we investigate the convergence of our algorithm and show that ADMM converges a stationary point when penalty parameter ρ is large enough. It is observed that the recovery performance degrades when the penalty parameter increases. For better performance, we propose a practical scheme of tuning the penalty parameter ρ . Demonstration of the superior recovery performance on sparse phase retrieval (SPR) is conducted and it shows that our method numerically infers near-exact solution without providing good initialization. Our proposed method distinguishes itself from other existing competitive algorithms in two aspects: (a) the initialization is much less crucial for the algorithmic success than other compared methods; (b) the sampling complexity for the phase transition of recovery is much markedly reduced than other existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ilan完成签到,获得积分10
刚刚
6秒前
ceeray23发布了新的文献求助30
25秒前
科目三应助ceeray23采纳,获得20
40秒前
白华苍松发布了新的文献求助20
49秒前
科研通AI2S应助科研通管家采纳,获得10
55秒前
Nancy0818完成签到 ,获得积分10
1分钟前
情怀应助白华苍松采纳,获得10
1分钟前
1分钟前
1分钟前
自律发布了新的文献求助10
1分钟前
自律完成签到,获得积分10
1分钟前
2分钟前
2分钟前
白华苍松发布了新的文献求助20
2分钟前
大个应助白华苍松采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
Qvby3完成签到 ,获得积分10
3分钟前
3分钟前
李健的小迷弟应助ceeray23采纳,获得20
3分钟前
两个榴莲完成签到,获得积分0
3分钟前
3分钟前
3分钟前
萝卜猪完成签到,获得积分10
3分钟前
SciGPT应助科研进化中采纳,获得10
3分钟前
我是老大应助zz采纳,获得10
4分钟前
深情安青应助和谐的芷文采纳,获得20
4分钟前
科研通AI2S应助BNN1203381110采纳,获得10
4分钟前
4分钟前
牛先生生完成签到,获得积分10
4分钟前
大胆的碧菡完成签到,获得积分10
4分钟前
冷傲半邪完成签到,获得积分10
4分钟前
紫熊完成签到,获得积分10
4分钟前
Huzhu应助科研通管家采纳,获得10
4分钟前
Jasper应助科研通管家采纳,获得10
4分钟前
Huzhu应助科研通管家采纳,获得30
4分钟前
朱明完成签到 ,获得积分10
5分钟前
在水一方应助金沐栋采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529289
求助须知:如何正确求助?哪些是违规求助? 4618433
关于积分的说明 14562625
捐赠科研通 4557474
什么是DOI,文献DOI怎么找? 2497536
邀请新用户注册赠送积分活动 1477750
关于科研通互助平台的介绍 1449175