已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction Of Transfusion Based On Machine Learning

计算机科学 人工智能 机器学习 医学
作者
Praveen Kumar Donepudi,Naresh Babu Bynagari
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.5622743
摘要

The capacity to anticipate transfusions during a hospital stay may allow for more efficient blood supply management, as well as increased patient safety by assuring a sufficient supply of red blood cells (RBCs) for a specific patient. As a result, we tested the accuracy of four machine learning–based prediction algorithms for predicting transfusion, large transfusion, and the number of transfusions in hospitalized patients. Between January 2008 and June 2017, researchers conducted a retrospective observational study at three adult tertiary care institutions in Western Australia. The area under the curve for the receiver operating characteristics curve, the F1 score, and the average precision of the four machine learning algorithms used: artificial neural networks (NNs), logistic regression (LR), random forests (RFs), and gradient boosting (GB) trees were the primary outcome measures for the classification tasks. Transfusion of at least 1 unit of RBCs could be predicted quite correctly using our four prediction models (sensitivity for NN, LR, RF, and GB: 0.898, 0.894, 0.584, and 0.872, respectively; specificity: 0.958, 0.966, 0.964, 0.965). The four approaches were less successful in predicting large transfusion (sensitivity: 0.780, 0.721, 0.002, and 0.797 for ANN, LR, RF, and GB, respectively; specificity: 0.994, 0.995, 0.993, 0.995). As a result, the total number of packed RBCs transfused was likewise very inaccurately predicted. This study shows that the need for intra-hospital transfusion can be predicted with reasonable accuracy, but the number of RBC units transfused throughout a hospital stay is more difficult to predict.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WNing发布了新的文献求助10
刚刚
刚刚
1秒前
siste完成签到,获得积分20
2秒前
4秒前
faye发布了新的文献求助10
4秒前
edc发布了新的文献求助10
6秒前
lucky发布了新的文献求助10
6秒前
怡然的红酒完成签到,获得积分20
8秒前
maguodrgon发布了新的文献求助10
9秒前
五十完成签到 ,获得积分10
10秒前
斯文明杰发布了新的文献求助10
10秒前
正直的雪糕完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
13秒前
13秒前
changliu发布了新的文献求助10
13秒前
13秒前
14秒前
邓佳鑫Alan应助冷艳的初露采纳,获得10
14秒前
15秒前
16秒前
P16发布了新的文献求助10
16秒前
JJy发布了新的文献求助30
17秒前
17秒前
18秒前
Picopy发布了新的文献求助10
18秒前
舒华泽发布了新的文献求助10
18秒前
ti完成签到,获得积分10
19秒前
Songyuxuan完成签到,获得积分10
20秒前
oyfff完成签到 ,获得积分10
20秒前
情怀应助周而复始@采纳,获得10
21秒前
科研通AI2S应助谦让的小龙采纳,获得10
22秒前
AXLY发布了新的文献求助10
22秒前
王惠琼发布了新的文献求助10
24秒前
trying发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481948
求助须知:如何正确求助?哪些是违规求助? 4582876
关于积分的说明 14387479
捐赠科研通 4511752
什么是DOI,文献DOI怎么找? 2472560
邀请新用户注册赠送积分活动 1458791
关于科研通互助平台的介绍 1432218