Prediction Of Transfusion Based On Machine Learning

计算机科学 人工智能 机器学习 医学
作者
Praveen Kumar Donepudi,Naresh Babu Bynagari
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.5622743
摘要

The capacity to anticipate transfusions during a hospital stay may allow for more efficient blood supply management, as well as increased patient safety by assuring a sufficient supply of red blood cells (RBCs) for a specific patient. As a result, we tested the accuracy of four machine learning–based prediction algorithms for predicting transfusion, large transfusion, and the number of transfusions in hospitalized patients. Between January 2008 and June 2017, researchers conducted a retrospective observational study at three adult tertiary care institutions in Western Australia. The area under the curve for the receiver operating characteristics curve, the F1 score, and the average precision of the four machine learning algorithms used: artificial neural networks (NNs), logistic regression (LR), random forests (RFs), and gradient boosting (GB) trees were the primary outcome measures for the classification tasks. Transfusion of at least 1 unit of RBCs could be predicted quite correctly using our four prediction models (sensitivity for NN, LR, RF, and GB: 0.898, 0.894, 0.584, and 0.872, respectively; specificity: 0.958, 0.966, 0.964, 0.965). The four approaches were less successful in predicting large transfusion (sensitivity: 0.780, 0.721, 0.002, and 0.797 for ANN, LR, RF, and GB, respectively; specificity: 0.994, 0.995, 0.993, 0.995). As a result, the total number of packed RBCs transfused was likewise very inaccurately predicted. This study shows that the need for intra-hospital transfusion can be predicted with reasonable accuracy, but the number of RBC units transfused throughout a hospital stay is more difficult to predict.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
丘比特应助345678与采纳,获得10
刚刚
jewel9完成签到,获得积分10
1秒前
1秒前
1秒前
YJ发布了新的文献求助10
1秒前
迟迟发布了新的文献求助10
1秒前
77发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
乐乐应助上岸采纳,获得10
2秒前
FashionBoy应助Faith采纳,获得10
2秒前
momo应助田奋采纳,获得10
2秒前
3秒前
123完成签到,获得积分20
3秒前
AN关闭了AN文献求助
3秒前
3秒前
体贴薯片发布了新的文献求助10
3秒前
3秒前
善学以致用应助紫定能行采纳,获得10
3秒前
科研太蓝了完成签到,获得积分10
3秒前
chechang完成签到,获得积分10
4秒前
小鱼完成签到,获得积分10
4秒前
猪蹄完成签到,获得积分10
4秒前
Owen应助北极光采纳,获得10
5秒前
独特乘云完成签到,获得积分10
5秒前
Lucas应助Solitude_Z采纳,获得10
5秒前
共享精神应助淡定汉堡采纳,获得10
6秒前
6秒前
Uranus发布了新的文献求助30
6秒前
fossil发布了新的文献求助30
6秒前
jeronimo发布了新的文献求助20
7秒前
7秒前
gengxw完成签到,获得积分10
7秒前
似风完成签到 ,获得积分10
8秒前
乐乐应助ttttt采纳,获得10
9秒前
9秒前
wanci应助卢西奥采纳,获得10
9秒前
李健应助77采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692816
求助须知:如何正确求助?哪些是违规求助? 5090275
关于积分的说明 15209741
捐赠科研通 4849989
什么是DOI,文献DOI怎么找? 2601457
邀请新用户注册赠送积分活动 1553204
关于科研通互助平台的介绍 1511374