Prediction Of Transfusion Based On Machine Learning

计算机科学 人工智能 机器学习 医学
作者
Praveen Kumar Donepudi,Naresh Babu Bynagari
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.5622743
摘要

The capacity to anticipate transfusions during a hospital stay may allow for more efficient blood supply management, as well as increased patient safety by assuring a sufficient supply of red blood cells (RBCs) for a specific patient. As a result, we tested the accuracy of four machine learning–based prediction algorithms for predicting transfusion, large transfusion, and the number of transfusions in hospitalized patients. Between January 2008 and June 2017, researchers conducted a retrospective observational study at three adult tertiary care institutions in Western Australia. The area under the curve for the receiver operating characteristics curve, the F1 score, and the average precision of the four machine learning algorithms used: artificial neural networks (NNs), logistic regression (LR), random forests (RFs), and gradient boosting (GB) trees were the primary outcome measures for the classification tasks. Transfusion of at least 1 unit of RBCs could be predicted quite correctly using our four prediction models (sensitivity for NN, LR, RF, and GB: 0.898, 0.894, 0.584, and 0.872, respectively; specificity: 0.958, 0.966, 0.964, 0.965). The four approaches were less successful in predicting large transfusion (sensitivity: 0.780, 0.721, 0.002, and 0.797 for ANN, LR, RF, and GB, respectively; specificity: 0.994, 0.995, 0.993, 0.995). As a result, the total number of packed RBCs transfused was likewise very inaccurately predicted. This study shows that the need for intra-hospital transfusion can be predicted with reasonable accuracy, but the number of RBC units transfused throughout a hospital stay is more difficult to predict.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ffan完成签到 ,获得积分10
1秒前
你好发布了新的文献求助10
1秒前
1秒前
2秒前
万能图书馆应助金熙美采纳,获得10
2秒前
tr发布了新的文献求助10
2秒前
常诺完成签到,获得积分10
2秒前
回鱼发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
林小昀完成签到 ,获得积分10
5秒前
Ivy完成签到,获得积分20
5秒前
完美世界应助灰烬使者采纳,获得10
5秒前
慕青应助L~采纳,获得10
6秒前
DDd发布了新的文献求助10
6秒前
7秒前
斯文败类应助123采纳,获得10
7秒前
忒寒碜完成签到,获得积分10
8秒前
JL发布了新的文献求助10
8秒前
10秒前
10秒前
YY发布了新的文献求助10
10秒前
打打应助ymxlcfc采纳,获得10
10秒前
John发布了新的文献求助10
10秒前
荷欢笙发布了新的文献求助10
10秒前
11秒前
有话好好硕完成签到 ,获得积分10
11秒前
会笑的光发布了新的文献求助10
12秒前
吴晗硕查文献完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
leezhen完成签到,获得积分10
13秒前
大个应助贪玩的万仇采纳,获得10
13秒前
tr完成签到,获得积分20
13秒前
乐乐应助178181采纳,获得10
13秒前
14秒前
15秒前
金熙美发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113