Prediction Of Transfusion Based On Machine Learning

计算机科学 人工智能 机器学习 医学
作者
Praveen Kumar Donepudi,Naresh Babu Bynagari
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.5622743
摘要

The capacity to anticipate transfusions during a hospital stay may allow for more efficient blood supply management, as well as increased patient safety by assuring a sufficient supply of red blood cells (RBCs) for a specific patient. As a result, we tested the accuracy of four machine learning–based prediction algorithms for predicting transfusion, large transfusion, and the number of transfusions in hospitalized patients. Between January 2008 and June 2017, researchers conducted a retrospective observational study at three adult tertiary care institutions in Western Australia. The area under the curve for the receiver operating characteristics curve, the F1 score, and the average precision of the four machine learning algorithms used: artificial neural networks (NNs), logistic regression (LR), random forests (RFs), and gradient boosting (GB) trees were the primary outcome measures for the classification tasks. Transfusion of at least 1 unit of RBCs could be predicted quite correctly using our four prediction models (sensitivity for NN, LR, RF, and GB: 0.898, 0.894, 0.584, and 0.872, respectively; specificity: 0.958, 0.966, 0.964, 0.965). The four approaches were less successful in predicting large transfusion (sensitivity: 0.780, 0.721, 0.002, and 0.797 for ANN, LR, RF, and GB, respectively; specificity: 0.994, 0.995, 0.993, 0.995). As a result, the total number of packed RBCs transfused was likewise very inaccurately predicted. This study shows that the need for intra-hospital transfusion can be predicted with reasonable accuracy, but the number of RBC units transfused throughout a hospital stay is more difficult to predict.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助木子采纳,获得10
1秒前
小杭76应助wyt采纳,获得10
1秒前
李博文完成签到,获得积分10
1秒前
Leticia发布了新的文献求助10
1秒前
balmy完成签到 ,获得积分10
2秒前
韩佳怡发布了新的文献求助50
2秒前
何海发布了新的文献求助10
2秒前
彩色的水蓝完成签到 ,获得积分10
2秒前
小象发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
乐观开朗派完成签到,获得积分10
6秒前
斯文依风完成签到,获得积分10
7秒前
8秒前
LLL完成签到,获得积分10
8秒前
kunkun完成签到,获得积分10
8秒前
zhangDL发布了新的文献求助10
9秒前
9秒前
Leticia完成签到,获得积分10
10秒前
10秒前
善学以致用应助嗑盐废物采纳,获得10
10秒前
courage完成签到,获得积分10
10秒前
蓝色条纹衫完成签到 ,获得积分10
10秒前
邵小庆发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
13秒前
杨廷友完成签到 ,获得积分10
14秒前
流香发布了新的文献求助30
14秒前
纯真抽屉完成签到,获得积分10
14秒前
浮游应助宋德宇采纳,获得10
14秒前
木子发布了新的文献求助10
14秒前
田様应助行歌采纳,获得10
14秒前
15秒前
1851611453完成签到 ,获得积分10
15秒前
16秒前
GuGuGaGaAH发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252271
求助须知:如何正确求助?哪些是违规求助? 4416124
关于积分的说明 13748660
捐赠科研通 4288014
什么是DOI,文献DOI怎么找? 2352722
邀请新用户注册赠送积分活动 1349497
关于科研通互助平台的介绍 1309009