亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction Of Transfusion Based On Machine Learning

计算机科学 人工智能 机器学习 医学
作者
Praveen Kumar Donepudi,Naresh Babu Bynagari
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.5622743
摘要

The capacity to anticipate transfusions during a hospital stay may allow for more efficient blood supply management, as well as increased patient safety by assuring a sufficient supply of red blood cells (RBCs) for a specific patient. As a result, we tested the accuracy of four machine learning–based prediction algorithms for predicting transfusion, large transfusion, and the number of transfusions in hospitalized patients. Between January 2008 and June 2017, researchers conducted a retrospective observational study at three adult tertiary care institutions in Western Australia. The area under the curve for the receiver operating characteristics curve, the F1 score, and the average precision of the four machine learning algorithms used: artificial neural networks (NNs), logistic regression (LR), random forests (RFs), and gradient boosting (GB) trees were the primary outcome measures for the classification tasks. Transfusion of at least 1 unit of RBCs could be predicted quite correctly using our four prediction models (sensitivity for NN, LR, RF, and GB: 0.898, 0.894, 0.584, and 0.872, respectively; specificity: 0.958, 0.966, 0.964, 0.965). The four approaches were less successful in predicting large transfusion (sensitivity: 0.780, 0.721, 0.002, and 0.797 for ANN, LR, RF, and GB, respectively; specificity: 0.994, 0.995, 0.993, 0.995). As a result, the total number of packed RBCs transfused was likewise very inaccurately predicted. This study shows that the need for intra-hospital transfusion can be predicted with reasonable accuracy, but the number of RBC units transfused throughout a hospital stay is more difficult to predict.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一行完成签到,获得积分10
1秒前
iman完成签到,获得积分10
10秒前
12秒前
12秒前
17秒前
缥缈雯发布了新的文献求助10
19秒前
敬业乐群完成签到,获得积分10
28秒前
暴躁的鱼完成签到 ,获得积分10
41秒前
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ff发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
思源应助kaia采纳,获得10
2分钟前
3分钟前
3分钟前
ZanE完成签到,获得积分10
3分钟前
3分钟前
积极的觅松完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
kaia完成签到,获得积分10
3分钟前
rodrisk完成签到 ,获得积分10
3分钟前
kaia发布了新的文献求助10
3分钟前
3分钟前
Lucas应助小巧含之采纳,获得10
4分钟前
少川完成签到 ,获得积分10
4分钟前
俭朴蜜蜂完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
yanna发布了新的文献求助10
4分钟前
yanna完成签到,获得积分10
4分钟前
4分钟前
领导范儿应助mumu三采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549206
求助须知:如何正确求助?哪些是违规求助? 4634546
关于积分的说明 14634767
捐赠科研通 4575948
什么是DOI,文献DOI怎么找? 2509399
邀请新用户注册赠送积分活动 1485299
关于科研通互助平台的介绍 1456488