亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction Of Transfusion Based On Machine Learning

计算机科学 人工智能 机器学习 医学
作者
Praveen Kumar Donepudi,Naresh Babu Bynagari
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
标识
DOI:10.5281/zenodo.5622743
摘要

The capacity to anticipate transfusions during a hospital stay may allow for more efficient blood supply management, as well as increased patient safety by assuring a sufficient supply of red blood cells (RBCs) for a specific patient. As a result, we tested the accuracy of four machine learning–based prediction algorithms for predicting transfusion, large transfusion, and the number of transfusions in hospitalized patients. Between January 2008 and June 2017, researchers conducted a retrospective observational study at three adult tertiary care institutions in Western Australia. The area under the curve for the receiver operating characteristics curve, the F1 score, and the average precision of the four machine learning algorithms used: artificial neural networks (NNs), logistic regression (LR), random forests (RFs), and gradient boosting (GB) trees were the primary outcome measures for the classification tasks. Transfusion of at least 1 unit of RBCs could be predicted quite correctly using our four prediction models (sensitivity for NN, LR, RF, and GB: 0.898, 0.894, 0.584, and 0.872, respectively; specificity: 0.958, 0.966, 0.964, 0.965). The four approaches were less successful in predicting large transfusion (sensitivity: 0.780, 0.721, 0.002, and 0.797 for ANN, LR, RF, and GB, respectively; specificity: 0.994, 0.995, 0.993, 0.995). As a result, the total number of packed RBCs transfused was likewise very inaccurately predicted. This study shows that the need for intra-hospital transfusion can be predicted with reasonable accuracy, but the number of RBC units transfused throughout a hospital stay is more difficult to predict.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晞暝关注了科研通微信公众号
4秒前
晞暝发布了新的文献求助10
21秒前
热情依白应助读书的时候采纳,获得10
40秒前
47秒前
领导范儿应助Ahan采纳,获得10
1分钟前
激动的似狮完成签到,获得积分0
1分钟前
1分钟前
1分钟前
沉默念瑶完成签到 ,获得积分10
1分钟前
热情依白应助读书的时候采纳,获得10
1分钟前
1分钟前
siv发布了新的文献求助10
1分钟前
晞暝完成签到,获得积分10
1分钟前
2分钟前
王志新完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
文艺的乌龟完成签到,获得积分20
3分钟前
Criminology34应助文艺的乌龟采纳,获得30
3分钟前
3分钟前
3分钟前
3分钟前
我是老大应助nullchuang采纳,获得10
3分钟前
4分钟前
4分钟前
Ji发布了新的文献求助30
4分钟前
nullchuang发布了新的文献求助10
4分钟前
4分钟前
桐桐应助何88888888采纳,获得10
4分钟前
Ji完成签到,获得积分10
4分钟前
4分钟前
Ahan发布了新的文献求助10
4分钟前
花城诚成发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688044
求助须知:如何正确求助?哪些是违规求助? 5062729
关于积分的说明 15193594
捐赠科研通 4846395
什么是DOI,文献DOI怎么找? 2598847
邀请新用户注册赠送积分活动 1550933
关于科研通互助平台的介绍 1509501