波束赋形
计算机科学
不完美的
认知无线电
电子工程
电信
无线
工程类
语言学
哲学
作者
Lei Zhang,Cunhua Pan,Yu Wang,Hong Ren,Kezhi Wang
出处
期刊:IEEE Transactions on Cognitive Communications and Networking
[Institute of Electrical and Electronics Engineers]
日期:2021-08-25
卷期号:8 (1): 186-201
被引量:59
标识
DOI:10.1109/tccn.2021.3107510
摘要
In this paper, intelligent reflecting surface (IRS) is introduced to enhance the network performance of cognitive radio (CR) systems. Specifically, we investigate robust beamforming design based on both bounded channel state information (CSI) error model and statistical CSI error model for primary user (PU)-related channels in IRS-aided CR systems. We jointly optimize the transmit precoding (TPC) at the secondary user (SU) transmitter (ST) and phase shifts at the IRS to minimize the ST's total transmit power subject to the quality of service of SUs, the limited interference imposed on the PU and unit-modulus of the reflective beamforming. The successive convex approximation (SCA) method, Schur's complement, General sign-definiteness principle, inverse Chi-square distribution and penalty convex-concave procedure are invoked for dealing with these intricate constraints. The non-convex optimization problems are transformed into several convex subproblems and efficient algorithms are proposed. Simulation results verify the efficiency of the proposed algorithms and reveal the impacts of CSI uncertainties on ST's minimum transmit power and feasibility rate of the optimization problems. Simulation results also show that the number of transmit antennas at the ST and the number of phase shifts at the IRS should be carefully chosen to balance the channel realization feasibility rate and the total transmit power.
科研通智能强力驱动
Strongly Powered by AbleSci AI