A Lightweight Metric Defence Strategy for Graph Neural Networks Against Poisoning Attacks

计算机科学 图形 公制(单位) 计算机安全 人工神经网络 人工智能 理论计算机科学 业务 营销
作者
Yang Xiao,Jie Li,Wengui Su
出处
期刊:Lecture Notes in Computer Science 卷期号:: 55-72 被引量:1
标识
DOI:10.1007/978-3-030-88052-1_4
摘要

Graph neural networks (GNN) are a specialized type of deep neural networks on graph structured data by aggregating the learned representations of node neighborhood, which has been widely applied in a variety of domains. However, recent studies demonstrate that using unnoticeable, artificially-crafted perturbations on graph structure can drastically damage the performance of GNNs. Hence, developing robust algorithms to defend poisoning attacks is of great significance. A natural idea to defend them is to delete perturbed edges from a poisoned graph and several efforts have been taken. However, current works either adopt specific threshold as a criteria to filter out poisoned effect for particular graphs or design quite complicated framework with higher time consumption, which can’t well be scablable in practice. Thus in this work, we first investigate the distinction of perturbed edges and normal edges behaved on metric space, then design a defense strategy, called MD-GNN based on Jaccard similarity. Its core principle is to discern the perturbed edges via deleting those edges with lower metric values. Besides, to preserve the valuable information of graph structure and avoid the appearance of the single node during deleting process, MD-GNN deploy the minimum connectivity principle as the terminated condition. Extensive experiments on three real-world datasets show that MD-GNN can effectively preserve state-of-the-art performance of GNNs in the face of poisoning attacks with less time consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助感动水杯采纳,获得10
1秒前
bkagyin应助ws采纳,获得10
1秒前
ZHUHONGYAO发布了新的文献求助10
1秒前
2秒前
2秒前
ihuhiu发布了新的文献求助10
2秒前
音玥完成签到,获得积分10
3秒前
大脸猫4811发布了新的文献求助10
4秒前
无奈满天发布了新的文献求助10
4秒前
Han发布了新的文献求助10
4秒前
5秒前
刘坦苇发布了新的文献求助10
5秒前
伶俐绿柏完成签到 ,获得积分10
6秒前
Singularity应助简单de快乐采纳,获得10
6秒前
早早发布了新的文献求助10
6秒前
cocolu应助简单de快乐采纳,获得10
6秒前
科研通AI2S应助简单de快乐采纳,获得10
6秒前
喝到几点应助简单de快乐采纳,获得10
6秒前
喝到几点应助简单de快乐采纳,获得10
6秒前
科研通AI2S应助简单de快乐采纳,获得10
6秒前
科研通AI2S应助简单de快乐采纳,获得10
6秒前
6秒前
折耳Doc发布了新的文献求助30
6秒前
7秒前
汉堡包应助晓xiao采纳,获得10
7秒前
7秒前
科研小白发布了新的文献求助10
8秒前
leo发布了新的文献求助10
8秒前
刘欢发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
13秒前
刘坦苇发布了新的文献求助10
13秒前
顾屿南歌发布了新的文献求助10
14秒前
李小麻发布了新的文献求助10
15秒前
美好小玉完成签到,获得积分10
15秒前
Zz完成签到,获得积分10
15秒前
JamesPei应助嗯qq采纳,获得10
16秒前
Viva完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459437
求助须知:如何正确求助?哪些是违规求助? 3053861
关于积分的说明 9039026
捐赠科研通 2743219
什么是DOI,文献DOI怎么找? 1504698
科研通“疑难数据库(出版商)”最低求助积分说明 695389
邀请新用户注册赠送积分活动 694664