M-GAN-XGBOOST model for sales prediction and precision marketing strategy making of each product in online stores

计算机科学 采购 产品(数学) 机器学习 营销 业务 数学 几何学
作者
Song Wang,Yang Yang
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
卷期号:55 (5): 749-770 被引量:24
标识
DOI:10.1108/dta-11-2020-0286
摘要

Purpose The rapid development of e-commerce has brought not only great convenience to people but a great challenge to online stores. Phenomenon such as out of stock and slow sales has been common in recent years. These issues can be managed only when the occurrence of the sales volume is predicted in advance, and sufficient warnings can be executed in time. Thus, keeping in mind the importance of the sales prediction system, the purpose of this paper is to propose an effective sales prediction model and make digital marketing strategies with the machine learning model. Design/methodology/approach Based on the consumer purchasing behavior decision theory, we discuss the factors affecting product sales, including external factors, consumer perception, consumer potential purchase behavior and consumer traffic. Then we propose a sales prediction model, M-GNA-XGBOOST, using the time-series prediction that ensures the effective prediction of sales about each product in a short time on online stores based on the sales data in the previous term or month or year. The proposed M-GNA-XGBOOST model serves as an adaptive prediction model, for which the instant factors and the sales data of the previous period are the input, and the optimal computation is based on the proposed methodology. The adaptive prediction using the proposed model is developed based on the LSTM (Long Short-Term Memory), GAN (Generative Adversarial Networks) and XGBOOST (eXtreme Gradient Boosting). The model inherits the advantages among the algorithms with better accuracy and forecasts the sales of each product in the store with instant data characteristics for the first time. Findings The analysis using Jingdong dataset proves the effectiveness of the proposed prediction method. The effectiveness of the proposed method is enhanced and the accuracy that instant data as input is found to be better compared with the model that lagged data as input. The root means squared error and mean absolute error of the proposed model are found to be around 11.9 and 8.23. According to the sales prediction of each product, the resource can be arranged in advance, and the marketing strategy of product positioning, product display optimization, inventory management and product promotion is designed for online stores. Originality/value The paper proposes and implements a new model, M-GNA-XGBOOST, to predict sales of each product for online stores. Our work provides reference and enlightenment for the establishment of accurate sales-based digital marketing strategies for online stores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祖f完成签到,获得积分10
刚刚
阿莫西林胶囊完成签到,获得积分10
1秒前
jason完成签到,获得积分10
1秒前
1秒前
科研通AI5应助吴岳采纳,获得10
2秒前
Sheila发布了新的文献求助10
2秒前
甜美的海瑶完成签到,获得积分10
3秒前
3秒前
3秒前
张牧之完成签到 ,获得积分10
3秒前
yuyukeke完成签到,获得积分10
4秒前
4秒前
沉默的婴完成签到 ,获得积分10
4秒前
5秒前
6秒前
Dita完成签到,获得积分10
6秒前
惠惠发布了新的文献求助10
6秒前
脑洞疼应助lan采纳,获得10
7秒前
8秒前
成就的笑南完成签到 ,获得积分10
9秒前
偷狗的小月亮完成签到,获得积分10
9秒前
爱吃泡芙完成签到,获得积分10
9秒前
ysl完成签到,获得积分10
10秒前
10秒前
爆米花应助pipge采纳,获得30
10秒前
彻底完成签到,获得积分10
11秒前
12秒前
韋晴完成签到,获得积分10
13秒前
13秒前
15秒前
领导范儿应助wenjian采纳,获得10
15秒前
15秒前
奇拉维特完成签到 ,获得积分10
15秒前
16秒前
Apple发布了新的文献求助10
16秒前
wtg完成签到,获得积分10
16秒前
在水一方应助Sheila采纳,获得10
17秒前
英姑应助YE采纳,获得30
17秒前
ysl发布了新的文献求助30
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808