An improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism

元启发式 水准点(测量) 计算机科学 混乱的 帐篷映射 算法 数学优化 初始化 人口 最优化问题 人工智能 数学 人口学 社会学 程序设计语言 地理 大地测量学
作者
Jiahao Fan,Ying Li,Tan Wang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (11): e0260725-e0260725 被引量:53
标识
DOI:10.1371/journal.pone.0260725
摘要

Metaheuristic optimization algorithms are one of the most effective methods for solving complex engineering problems. However, the performance of a metaheuristic algorithm is related to its exploration ability and exploitation ability. Therefore, to further improve the African vultures optimization algorithm (AVOA), a new metaheuristic algorithm, an improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism (TAVOA), is proposed. First, a tent chaotic map is introduced for population initialization. Second, the individual's historical optimal position is recorded and applied to individual location updating. Third, a time-varying mechanism is designed to balance the exploration ability and exploitation ability. To verify the effectiveness and efficiency of TAVOA, TAVOA is tested on 23 basic benchmark functions, 28 CEC 2013 benchmark functions and 3 common real-world engineering design problems, and compared with AVOA and 5 other state-of-the-art metaheuristic optimization algorithms. According to the results of the Wilcoxon rank-sum test with 5%, among the 23 basic benchmark functions, the performance of TAVOA has significantly better than that of AVOA on 13 functions. Among the 28 CEC 2013 benchmark functions, the performance of TAVOA on 9 functions is significantly better than AVOA, and on 17 functions is similar to AVOA. Besides, compared with the six metaheuristic optimization algorithms, TAVOA also shows good performance in real-world engineering design problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮鲁完成签到,获得积分10
2秒前
2秒前
3秒前
Lucas应助朱玉采纳,获得10
3秒前
江峰应助科研白小白采纳,获得10
4秒前
ccc冲冲冲发布了新的文献求助10
4秒前
深情安青应助文静三颜采纳,获得10
5秒前
5秒前
科研通AI2S应助skyer1采纳,获得10
6秒前
6秒前
6秒前
小白发布了新的文献求助10
7秒前
7秒前
JJ索发布了新的文献求助10
8秒前
10秒前
njr发布了新的文献求助10
11秒前
叁壹粑粑发布了新的文献求助10
11秒前
wanci应助执着小蜜蜂采纳,获得10
12秒前
12秒前
今后应助恶恶么v采纳,获得10
13秒前
FashionBoy应助灵巧千易采纳,获得10
13秒前
Aurora发布了新的文献求助10
14秒前
15秒前
嗯很好发布了新的文献求助30
16秒前
请叫我风吹麦浪应助zzn采纳,获得10
16秒前
搜集达人应助ccc冲冲冲采纳,获得10
17秒前
拿捏陕科大完成签到,获得积分10
17秒前
宋小七完成签到,获得积分10
19秒前
劲秉应助科研达人采纳,获得10
20秒前
zpj完成签到 ,获得积分10
20秒前
20秒前
21秒前
22秒前
所所应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
yolo39应助科研通管家采纳,获得10
23秒前
科目三应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
ceeray23应助科研通管家采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465661
求助须知:如何正确求助?哪些是违规求助? 3058707
关于积分的说明 9062890
捐赠科研通 2749106
什么是DOI,文献DOI怎么找? 1508335
科研通“疑难数据库(出版商)”最低求助积分说明 696885
邀请新用户注册赠送积分活动 696569