计算机科学
分割
对象(语法)
人工智能
集合(抽象数据类型)
质量(理念)
像素
模式识别(心理学)
机器学习
哲学
认识论
程序设计语言
作者
Ju He,Shuo Yang,Shaokang Yang,Adam Kortylewski,Xiaoding Yuan,Jie-Neng Chen,Shuai Liu,Cheng Yang,Qihang Yu,Alan Yuille
标识
DOI:10.1007/978-3-031-20074-8_8
摘要
It is natural to represent objects in terms of their parts. This has the potential to improve the performance of algorithms for object recognition and segmentation but can also help for downstream tasks like activity recognition. Research on part-based models, however, is hindered by the lack of datasets with per-pixel part annotations. This is partly due to the difficulty and high cost of annotating object parts so it has rarely been done except for humans (where there exists a big literature on part-based models). To help address this problem, we propose PartImageNet, a large, high-quality dataset with part segmentation annotations. It consists of 158 classes from ImageNet with approximately 24, 000 images. PartImageNet is unique because it offers part-level annotations on a general set of classes including non-rigid, articulated objects, while having an order of magnitude larger size compared to existing part datasets (excluding datasets of humans). It can be utilized for many vision tasks including Object Segmentation, Semantic Part Segmentation, Few-shot Learning and Part Discovery. We conduct comprehensive experiments which study these tasks and set up a set of baselines.
科研通智能强力驱动
Strongly Powered by AbleSci AI