A safer organic cathode material with overheating self-protection function for lithium batteries

过热(电) 热失控 阴极 材料科学 锂离子电池 汽车工程 电池(电) 电气工程 工程类 量子力学 物理 功率(物理)
作者
Tengfei Li,Lihua Wang,Jian Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:431: 133901-133901 被引量:9
标识
DOI:10.1016/j.cej.2021.133901
摘要

Rechargeable lithium batteries (LBs) have been widely applied in portable devices, electric vehicles (EVs) and grid energy storage systems due to their higher energy density, long cycle life and lack of memory effect. However, if operated improperly such as thermal impact, mechanical damage or short-circuiting, it will cause the vast heat accumulation of LBs, finally fires or explosions. Here, we report a novel concept that the temperature-sensitive conductive polymer-based materials ([email protected] and [email protected] nanocomposites) as cathode materials with intrinsic overheating self-protection function enabled by removing active anions can mitigate the safety concern of LBs. In normal operation conditions, both [email protected] and [email protected] display a better electrochemical performance compared with the reported anion-active cathode materials. More importantly, the thermal dedoping of electroactive PF6- from P3OT or P3BT matrix when the battery temperature reaches to a given high temperature can provide overheating self-protection for LBs, avoiding the occurrence of thermal runaway. During the charging process, the thermal dedoping of PF6- causes the battery voltage to not rise, namely the loss of charging function. This abnormal voltage signal can offer an early warning of battery overheating, allowing timely handling and preventing the occur of thermal runaway of battery. When discharged, the battery can be rapidly switched off with delivering little capacity, avoiding the continuous heat accumulation and preventing battery from thermal runaway. This work provides a new thermal protection strategy for safer LBs, utilizing the intrinsic overheating protection function of cathode materials without introducing extra thermal protection elements to battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nini完成签到,获得积分10
2秒前
4秒前
YHF2完成签到,获得积分10
4秒前
7秒前
dt完成签到,获得积分10
9秒前
顶顶小明发布了新的文献求助10
9秒前
共享精神应助robi采纳,获得10
11秒前
14秒前
柳觅夏完成签到,获得积分10
15秒前
云辞忧完成签到,获得积分10
16秒前
18秒前
xi发布了新的文献求助10
22秒前
忧虑的访梦完成签到,获得积分10
23秒前
23秒前
lanlan完成签到 ,获得积分20
24秒前
顶顶小明完成签到,获得积分10
24秒前
robi发布了新的文献求助10
26秒前
苏桑焉完成签到 ,获得积分10
27秒前
王羊补牢完成签到 ,获得积分10
29秒前
机智的曼易完成签到 ,获得积分10
30秒前
31秒前
杨秋月发布了新的文献求助10
31秒前
惑感完成签到 ,获得积分10
35秒前
哈哈哈哈哈完成签到,获得积分10
35秒前
科研通AI2S应助宇文思采纳,获得30
35秒前
able完成签到 ,获得积分10
38秒前
38秒前
42秒前
杨秋月完成签到,获得积分10
42秒前
42秒前
43秒前
完美世界应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
研友_VZG7GZ应助科研通管家采纳,获得10
44秒前
慕青应助科研通管家采纳,获得10
44秒前
44秒前
zyy6657完成签到,获得积分10
44秒前
44秒前
46秒前
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134935
求助须知:如何正确求助?哪些是违规求助? 2785802
关于积分的说明 7774295
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298093
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825