A safer organic cathode material with overheating self-protection function for lithium batteries

过热(电) 热失控 阴极 材料科学 锂离子电池 汽车工程 电池(电) 电气工程 工程类 功率(物理) 物理 量子力学
作者
Tengfei Li,Lihua Wang,Jian Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:431: 133901-133901 被引量:21
标识
DOI:10.1016/j.cej.2021.133901
摘要

Rechargeable lithium batteries (LBs) have been widely applied in portable devices, electric vehicles (EVs) and grid energy storage systems due to their higher energy density, long cycle life and lack of memory effect. However, if operated improperly such as thermal impact, mechanical damage or short-circuiting, it will cause the vast heat accumulation of LBs, finally fires or explosions. Here, we report a novel concept that the temperature-sensitive conductive polymer-based materials ([email protected] and [email protected] nanocomposites) as cathode materials with intrinsic overheating self-protection function enabled by removing active anions can mitigate the safety concern of LBs. In normal operation conditions, both [email protected] and [email protected] display a better electrochemical performance compared with the reported anion-active cathode materials. More importantly, the thermal dedoping of electroactive PF6- from P3OT or P3BT matrix when the battery temperature reaches to a given high temperature can provide overheating self-protection for LBs, avoiding the occurrence of thermal runaway. During the charging process, the thermal dedoping of PF6- causes the battery voltage to not rise, namely the loss of charging function. This abnormal voltage signal can offer an early warning of battery overheating, allowing timely handling and preventing the occur of thermal runaway of battery. When discharged, the battery can be rapidly switched off with delivering little capacity, avoiding the continuous heat accumulation and preventing battery from thermal runaway. This work provides a new thermal protection strategy for safer LBs, utilizing the intrinsic overheating protection function of cathode materials without introducing extra thermal protection elements to battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
挽忆逍遥完成签到 ,获得积分10
1秒前
一木完成签到,获得积分10
1秒前
guan完成签到,获得积分10
1秒前
行者发布了新的文献求助10
2秒前
波奇塔发布了新的文献求助10
2秒前
司空绝山完成签到,获得积分10
2秒前
2秒前
泥鳅面完成签到,获得积分10
2秒前
2秒前
所所应助歇洛克采纳,获得10
3秒前
RRRabbit完成签到,获得积分10
3秒前
3秒前
杉杉完成签到 ,获得积分10
3秒前
Adi完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
susan完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
紧张的斩完成签到 ,获得积分10
5秒前
白衣修身完成签到,获得积分10
5秒前
甜美的觅荷完成签到,获得积分10
5秒前
shea完成签到,获得积分10
6秒前
CipherSage应助ahuang采纳,获得10
6秒前
7秒前
2Y_DADA完成签到,获得积分10
8秒前
随随完成签到 ,获得积分10
8秒前
大角牛发布了新的文献求助10
9秒前
le发布了新的文献求助10
9秒前
9秒前
obaica完成签到,获得积分10
10秒前
xiaoxiao虫完成签到,获得积分10
11秒前
1111发布了新的文献求助10
11秒前
拓跋傲薇完成签到,获得积分10
11秒前
ercha完成签到,获得积分10
11秒前
limumu完成签到 ,获得积分10
12秒前
呆萌的莲完成签到,获得积分10
12秒前
XF完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451