自回归模型
马尔科夫蒙特卡洛
吉布斯抽样
贝叶斯概率
数学
协变量
线性模型
星型
一般化
加性模型
应用数学
马尔可夫链
计量经济学
计算机科学
统计
自回归积分移动平均
时间序列
数学分析
作者
Zhiyong Chen,Minghui Chen,Guodong Xing
摘要
In this paper, we aim to develop a partially linear additive spatial autoregressive model (PLASARM), which is a generalization of the partially linear additive model and spatial autoregressive model. It can be used to simultaneously evaluate the linear and nonlinear effects of the covariates on the response for spatial data. To estimate the unknown parameters and approximate nonparametric functions by Bayesian P-splines, we develop a Bayesian Markov Chain Monte Carlo approach to estimate the PLASARM and design a Gibbs sampler to explore the joint posterior distributions of unknown parameters. Furthermore, we illustrate the performance of the proposed model and estimation method by a simulation study and analysis of Chinese housing price data.
科研通智能强力驱动
Strongly Powered by AbleSci AI