Error Bounds of Imitating Policies and Environments for Reinforcement Learning

强化学习 计算机科学 人工智能 机器学习 钢筋 计算机视觉 心理学 社会心理学
作者
Tian Xu,Ziniu Li,Yang Yu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:44 (10): 6968-6980 被引量:18
标识
DOI:10.1109/tpami.2021.3096966
摘要

In sequential decision-making, imitation learning (IL) trains a policy efficiently by mimicking expert demonstrations. Various imitation methods were proposed and empirically evaluated, meanwhile, their theoretical understandings need further studies, among which the compounding error in long-horizon decisions is a major issue. In this paper, we first analyze the value gap between the expert policy and imitated policies by two imitation methods, behavioral cloning (BC) and generative adversarial imitation. The results support that generative adversarial imitation can reduce the compounding error compared to BC. Furthermore, we establish the lower bounds of IL under two settings, suggesting the significance of environment interactions in IL. By considering the environment transition model as a dual agent, IL can also be used to learn the environment model. Therefore, based on the bounds of imitating policies, we further analyze the performance of imitating environments. The results show that environment models can be more effectively imitated by generative adversarial imitation than BC. Particularly, we obtain a policy evaluation error that is linear with the effective planning horizon w.r.t. the model bias, suggesting a novel application of adversarial imitation for model-based reinforcement learning (MBRL). We hope these results could inspire future advances in IL and MBRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助唐南采纳,获得30
刚刚
CodeCraft应助高高的罡采纳,获得10
刚刚
果冻发布了新的文献求助30
刚刚
可爱嚣发布了新的文献求助10
2秒前
星辰大海应助完美的凝蝶采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
pcm完成签到 ,获得积分10
3秒前
4秒前
5秒前
马呆呆应助龙龙采纳,获得10
5秒前
火柴盒完成签到,获得积分10
6秒前
6秒前
果冻完成签到,获得积分10
7秒前
8秒前
Lucas应助GAME采纳,获得10
8秒前
英俊的半兰完成签到,获得积分10
9秒前
汉堡包应助board_Gu采纳,获得10
9秒前
ZZQ发布了新的文献求助10
11秒前
WY发布了新的文献求助10
11秒前
大方乐驹完成签到,获得积分10
12秒前
高兴阑悦完成签到,获得积分10
12秒前
12秒前
12秒前
Aquarius完成签到,获得积分10
13秒前
NexusExplorer应助聪慧的微笑采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
大方乐驹发布了新的文献求助10
14秒前
15秒前
16秒前
satchzhao发布了新的文献求助10
17秒前
听风发布了新的文献求助30
17秒前
123发布了新的文献求助10
17秒前
破防怪完成签到,获得积分10
18秒前
WY完成签到,获得积分20
18秒前
19秒前
L~完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
lcs发布了新的文献求助10
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664386
求助须知:如何正确求助?哪些是违规求助? 3224468
关于积分的说明 9757617
捐赠科研通 2934362
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758854
科研通“疑难数据库(出版商)”最低求助积分说明 735012