A numerical study of Markov decision process algorithms for multi-component replacement problems

离散化 马尔可夫决策过程 计算机科学 数学优化 加速 组分(热力学) 动态规划 算法 马尔可夫过程 随机规划 数学 并行计算 热力学 统计 物理 数学分析
作者
Jesper Fink Andersen,Anders Reenberg Andersen,Murat Külahçı,Bo Friis Nielsen
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:299 (3): 898-909 被引量:24
标识
DOI:10.1016/j.ejor.2021.07.007
摘要

We present a unified modeling framework for Time-Based Maintenance (TBM) and Condition-Based Maintenance (CBM) for optimization of replacements in multi-component systems. The considered system has a K-out-of-N reliability structure, and components deteriorate according to a multivariate gamma process with Lévy copula dependence. The TBM and CBM models are formulated as Markov Decision Processes (MDPs), and optimal policies are found using dynamic programming. Solving the CBM model requires that the continuous deterioration process is discretized. We therefore investigate the discretization level required for obtaining a near-optimal policy. Our results indicate that a coarser discretization level than previously suggested in the literature is adequate, indicating that dynamic programming is a feasible approach for optimization in multi-component systems. We further demonstrate this through empirical results for the size limit of the MDP models when solved with an optimized implementation of modified policy iteration. The TBM model can generally be solved with more components than the CBM model, since the former has a sparser state transition structure. In the special case of independent component deterioration, transition probabilities can be calculated efficiently at runtime. This reduces the memory requirements substantially. For this case, we also achieved a tenfold speedup when using ten processors in a parallel implementation of algorithm. Altogether, our results show that the computational requirements for systems with independent component deterioration increase at a slower rate than for systems with stochastic dependence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知行合一完成签到,获得积分20
1秒前
董烁烨发布了新的文献求助10
2秒前
从容以山发布了新的文献求助10
3秒前
3秒前
3秒前
啦啦啦啦啦完成签到,获得积分10
3秒前
3秒前
lullll应助Harper采纳,获得10
3秒前
小能潜水咕噜噜完成签到,获得积分10
4秒前
geoman发布了新的文献求助10
4秒前
汉堡包应助伍豪采纳,获得10
5秒前
7秒前
领导范儿应助琪求好运采纳,获得10
7秒前
7秒前
JMrider完成签到,获得积分10
7秒前
KNOW发布了新的文献求助10
8秒前
overlood发布了新的文献求助10
10秒前
冷艳折耳根完成签到 ,获得积分10
10秒前
杨小鸿完成签到 ,获得积分10
11秒前
DY完成签到,获得积分10
12秒前
小程发布了新的文献求助10
13秒前
科研通AI6应助GHB采纳,获得10
13秒前
小凡123发布了新的文献求助10
15秒前
SciGPT应助杨小鸿采纳,获得10
15秒前
zhang完成签到,获得积分10
18秒前
18秒前
19秒前
21秒前
曹颖发布了新的文献求助10
21秒前
21秒前
北方完成签到,获得积分20
23秒前
兜兜应助jui采纳,获得20
23秒前
科研通AI6应助KNOW采纳,获得10
25秒前
大个应助egugagejgnng采纳,获得30
25秒前
28秒前
29秒前
mmnn完成签到 ,获得积分10
31秒前
11完成签到,获得积分10
32秒前
琪求好运发布了新的文献求助10
32秒前
bkagyin应助与落采纳,获得10
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225925
求助须知:如何正确求助?哪些是违规求助? 4397578
关于积分的说明 13686733
捐赠科研通 4262055
什么是DOI,文献DOI怎么找? 2338915
邀请新用户注册赠送积分活动 1336294
关于科研通互助平台的介绍 1292263