The interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe: a first-principles study

异质结 材料科学 光电效应 光电子学 光电流 太阳能电池 半导体 带隙 碲化镉光电
作者
Luan Li-jun,He Yi,Wang Tao,Liu Zong-Wen
出处
期刊:Acta Physica Sinica 卷期号:70 (16): 166302-1-166302-10
标识
DOI:10.7498/aps.70.20210268
摘要

CdS/CdMnTe heterojunction is the core of photoelectric conversion of CdMnTe film solar cells, whose interface properties have an important influence on the cell efficiency. In this study, the first-principles calculation method based on density functional theory is used to build the surface model for each of the CdS (002) and the CdMnTe (111) and the model of CdS/CdMnTe heterojunction with Mn atoms occupying different positions, and to analyze their electronic properties and optical properties. The results show that the lattice mismatch of the CdS/CdMnTe heterojunction is about 3.5%, the atomic positions and bond lengths of the interface change slightly after relaxation. The density of states shows that there is no interface state near the Fermi level in CdS/CdMnTe interface. Besides, the atoms at CdS/CdMnTe interface are hybridized, which can enhance the interface bonding. The differential charge density analyses indicate that the charge transfer mainly occurs at the interface, and electrons transfer from CdMnTe to CdS. The optical analysis shows that CdS/CdMnTe heterojunction mainly absorbs ultraviolet light, and the absorption coefficient can reach 105 cm–1. However, the optical properties of heterojunctions with different Mn atom positions are slightly different. In a range of 200–250 nm, the absorption coefficient of the heterojunction with Mn atom in the middle layer is larger, but in a range of 250–900 nm, the absorption peak of the heterojunction with Mn atom in the interface layer is higher. The results in this paper can provide some references for improving the photoelectric conversion efficiency of stacked solar cells through the reasonable construction of the heterojunction model and the analysis of the interface photoelectric performance, which is beneficial to the experimental research of multi-band gap heterojunction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ape完成签到,获得积分20
刚刚
马保国123发布了新的文献求助10
1秒前
归海紫翠完成签到,获得积分10
1秒前
1秒前
岑夜南完成签到,获得积分10
1秒前
uniphoton完成签到,获得积分10
1秒前
FashionBoy应助zzznznnn采纳,获得10
1秒前
1秒前
哈哈发布了新的文献求助10
1秒前
成就的山水完成签到,获得积分10
2秒前
2秒前
2秒前
尚可完成签到 ,获得积分10
2秒前
赖道之发布了新的文献求助10
3秒前
完美世界应助yuan采纳,获得10
3秒前
丘比特应助bluer采纳,获得10
3秒前
好运来发布了新的文献求助10
3秒前
榕俊完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
卡卡发布了新的文献求助10
4秒前
zouzou完成签到,获得积分10
5秒前
5秒前
CodeCraft应助FFF采纳,获得10
6秒前
冰河完成签到,获得积分10
6秒前
6秒前
领导范儿应助鱼雷采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
22发布了新的文献求助10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762