多尺度建模
电池(电)
表征(材料科学)
计算机科学
缩放比例
固态
线性比例尺
财产(哲学)
纳米技术
材料科学
计算科学
工程物理
工程类
化学
物理
计算化学
热力学
哲学
地理
功率(物理)
认识论
数学
大地测量学
几何学
作者
Haoyue Guo,Qian Wang,Annika Stuke,Alexander Urban,Nongnuch Artrith
标识
DOI:10.3389/fenrg.2021.695902
摘要
Materials for solid-state batteries often exhibit complex chemical compositions, defects, and disorder, making both experimental characterization and direct modeling with first principles methods challenging. Machine learning (ML) has proven versatile for accelerating or circumventing first-principles calculations, thereby facilitating the modeling of materials properties that are otherwise hard to access. ML potentials trained on accurate first principles data enable computationally efficient linear-scaling atomistic simulations with an accuracy close to the reference method. ML-based property-prediction and inverse design techniques are powerful for the computational search for new materials. Here, we give an overview of recent methodological advancements of ML techniques for atomic-scale modeling and materials design. We review applications to materials for solid-state batteries, including electrodes, solid electrolytes, coatings, and the complex interfaces involved.
科研通智能强力驱动
Strongly Powered by AbleSci AI