苜蓿
生物
基因型
转录组
苜蓿
苗木
基因
植物
基因表达
遗传学
作者
Qiaoli Ma,Xing Xu,Wenjing Wang,Lijuan Zhao,Dongmei Ma,Yingzhong Xie
标识
DOI:10.1016/j.plaphy.2021.05.008
摘要
Drought is one of the main abiotic factors that affect alfalfa yield. The identification of genes that control this complex trait can provide important insights for alfalfa breeding. However, little is known about how alfalfa responds and adapts to drought stress, particularly in cultivars of differing drought tolerance. In this study, the drought-tolerant cultivar Dryland 'DT' and the drought-sensitive cultivar WL343HQ 'DS' were used to characterize leaf and root physiological responses and transcriptional changes in response to water deficit. Under drought stress, Dryland roots (DTR) showed more differentially expressed genes than WL343HQ roots (DSR), whereas WL343HQ leaves (DSL) showed more differentially expressed genes than Dryland leaves (DTL). Many of these genes were involved in stress-related pathways, carbohydrate metabolism, and lignin and wax biosynthesis, which may have improved the drought tolerance of alfalfa. We also observed that several genes related to ABA metabolism, root elongation, peroxidase activity, cell membrane stability, ubiquitination, and genetic processing responded to drought stress in alfalfa. We highlighted several candidate genes, including sucrose synthase, xylan 1,4-beta-xylosidase, primary-amine oxidase, and alcohol-forming fatty acyl-CoA reductase, for future studies on drought stress resistance in alfalfa and other plant species. In summary, our results reveal the unique drought adaptation and resistance characteristics of two alfalfa genotypes. These findings, which may be valuable for drought resistance breeding, warrant further gene functional analysis to augment currently available information and to clarify the drought stress regulatory mechanisms of alfalfa and other plants.
科研通智能强力驱动
Strongly Powered by AbleSci AI