Domain generalization on medical imaging classification using episodic training with task augmentation

过度拟合 计算机科学 人工智能 一般化 机器学习 任务(项目管理) 利用 概化理论 深度学习 多任务学习 学习迁移 领域(数学分析) 医学影像学 人工神经网络 统计 计算机安全 数学分析 经济 数学 管理
作者
Chenxin Li,Xin Lin,Yijin Mao,Wei Lin,Qi Qi,Xinghao Ding,Yue Huang,Dong Liang,Yizhou Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:141: 105144-105144 被引量:8
标识
DOI:10.1016/j.compbiomed.2021.105144
摘要

Medical imaging datasets usually exhibit domain shift due to the variations of scanner vendors, imaging protocols, etc. This raises the concern about the generalization capacity of machine learning models. Domain generalization (DG), which aims to learn a model from multiple source domains such that it can be directly generalized to unseen test domains, seems particularly promising to medical imaging community. To address DG, recent model-agnostic meta-learning (MAML) has been introduced, which transfers the knowledge from previous training tasks to facilitate the learning of novel testing tasks. However, in clinical practice, there are usually only a few annotated source domains available, which decreases the capacity of training task generation and thus increases the risk of overfitting to training tasks in the paradigm. In this paper, we propose a novel DG scheme of episodic training with task augmentation on medical imaging classification. Based on meta-learning, we develop the paradigm of episodic training to construct the knowledge transfer from episodic training-task simulation to the real testing task of DG. Motivated by the limited number of source domains in real-world medical deployment, we consider the unique task-level overfitting and we propose task augmentation to enhance the variety during training task generation to alleviate it. With the established learning framework, we further exploit a novel meta-objective to regularize the deep embedding of training domains. To validate the effectiveness of the proposed method, we perform experiments on histopathological images and abdominal CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郝宝真发布了新的文献求助10
刚刚
许若南完成签到,获得积分10
刚刚
1秒前
1秒前
苏鱼完成签到 ,获得积分10
2秒前
欣欣向荣发布了新的文献求助10
2秒前
小董哥完成签到,获得积分10
2秒前
3秒前
3秒前
安白枫完成签到,获得积分10
3秒前
悦耳大树关注了科研通微信公众号
4秒前
cloud发布了新的文献求助30
4秒前
科研通AI2S应助研友_8o5V2n采纳,获得10
4秒前
王彤彤发布了新的文献求助10
4秒前
5秒前
you发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
研友_VZG7GZ应助zzz采纳,获得10
7秒前
8秒前
威武鸽子完成签到,获得积分10
9秒前
9秒前
隐形曼青应助陈少华采纳,获得10
9秒前
10秒前
负责的宛发布了新的文献求助10
10秒前
Robe发布了新的文献求助10
11秒前
zhanglh发布了新的文献求助100
11秒前
小马甲应助cc采纳,获得10
12秒前
Fine发布了新的文献求助10
12秒前
Vizz发布了新的文献求助10
12秒前
iota完成签到,获得积分10
13秒前
13秒前
木子发布了新的文献求助10
13秒前
笨笨的店员完成签到,获得积分20
14秒前
关关难过完成签到,获得积分20
15秒前
16秒前
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169526
求助须知:如何正确求助?哪些是违规求助? 2820711
关于积分的说明 7931902
捐赠科研通 2481044
什么是DOI,文献DOI怎么找? 1321655
科研通“疑难数据库(出版商)”最低求助积分说明 633307
版权声明 602530