Domain generalization on medical imaging classification using episodic training with task augmentation

过度拟合 计算机科学 人工智能 一般化 机器学习 任务(项目管理) 利用 概化理论 深度学习 多任务学习 学习迁移 领域(数学分析) 医学影像学 人工神经网络 统计 计算机安全 数学分析 经济 数学 管理
作者
Chenxin Li,Xin Lin,Yijin Mao,Wei Lin,Qi Qi,Xinghao Ding,Yue Huang,Dong Liang,Yizhou Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:141: 105144-105144 被引量:71
标识
DOI:10.1016/j.compbiomed.2021.105144
摘要

Medical imaging datasets usually exhibit domain shift due to the variations of scanner vendors, imaging protocols, etc. This raises the concern about the generalization capacity of machine learning models. Domain generalization (DG), which aims to learn a model from multiple source domains such that it can be directly generalized to unseen test domains, seems particularly promising to medical imaging community. To address DG, recent model-agnostic meta-learning (MAML) has been introduced, which transfers the knowledge from previous training tasks to facilitate the learning of novel testing tasks. However, in clinical practice, there are usually only a few annotated source domains available, which decreases the capacity of training task generation and thus increases the risk of overfitting to training tasks in the paradigm. In this paper, we propose a novel DG scheme of episodic training with task augmentation on medical imaging classification. Based on meta-learning, we develop the paradigm of episodic training to construct the knowledge transfer from episodic training-task simulation to the real testing task of DG. Motivated by the limited number of source domains in real-world medical deployment, we consider the unique task-level overfitting and we propose task augmentation to enhance the variety during training task generation to alleviate it. With the established learning framework, we further exploit a novel meta-objective to regularize the deep embedding of training domains. To validate the effectiveness of the proposed method, we perform experiments on histopathological images and abdominal CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123完成签到,获得积分10
2秒前
洒脱发布了新的文献求助10
6秒前
Damtree发布了新的文献求助10
6秒前
动人的代芹完成签到,获得积分10
7秒前
科研通AI6应助博珺辰采纳,获得10
7秒前
SciGPT应助零距离采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
科研通AI6应助yr采纳,获得30
9秒前
柔弱的芷珍完成签到,获得积分10
10秒前
赘婿应助catear采纳,获得10
10秒前
hbhsjk完成签到,获得积分10
16秒前
17秒前
武雨寒发布了新的文献求助10
17秒前
数学情缘完成签到,获得积分10
17秒前
Emi完成签到 ,获得积分10
17秒前
SciGPT应助山水之乐采纳,获得10
18秒前
在水一方应助mont采纳,获得10
18秒前
18秒前
Criminology34应助左西采纳,获得10
19秒前
19秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
20秒前
happyday发布了新的文献求助10
23秒前
24秒前
芃芃完成签到 ,获得积分10
26秒前
27秒前
诺诺完成签到 ,获得积分10
30秒前
31秒前
aaaa完成签到 ,获得积分10
32秒前
mont完成签到,获得积分10
33秒前
33秒前
123456789完成签到 ,获得积分10
33秒前
33秒前
36秒前
杨震发布了新的文献求助10
36秒前
37秒前
mont发布了新的文献求助10
37秒前
37秒前
量子星尘发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422108
求助须知:如何正确求助?哪些是违规求助? 4537012
关于积分的说明 14155721
捐赠科研通 4453595
什么是DOI,文献DOI怎么找? 2442968
邀请新用户注册赠送积分活动 1434374
关于科研通互助平台的介绍 1411439