Domain generalization on medical imaging classification using episodic training with task augmentation

过度拟合 计算机科学 人工智能 一般化 机器学习 任务(项目管理) 利用 概化理论 深度学习 多任务学习 学习迁移 领域(数学分析) 医学影像学 人工神经网络 统计 计算机安全 数学分析 经济 数学 管理
作者
Chenxin Li,Xin Lin,Yijin Mao,Wei Lin,Qi Qi,Xinghao Ding,Yue Huang,Dong Liang,Yizhou Yu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:141: 105144-105144 被引量:8
标识
DOI:10.1016/j.compbiomed.2021.105144
摘要

Medical imaging datasets usually exhibit domain shift due to the variations of scanner vendors, imaging protocols, etc. This raises the concern about the generalization capacity of machine learning models. Domain generalization (DG), which aims to learn a model from multiple source domains such that it can be directly generalized to unseen test domains, seems particularly promising to medical imaging community. To address DG, recent model-agnostic meta-learning (MAML) has been introduced, which transfers the knowledge from previous training tasks to facilitate the learning of novel testing tasks. However, in clinical practice, there are usually only a few annotated source domains available, which decreases the capacity of training task generation and thus increases the risk of overfitting to training tasks in the paradigm. In this paper, we propose a novel DG scheme of episodic training with task augmentation on medical imaging classification. Based on meta-learning, we develop the paradigm of episodic training to construct the knowledge transfer from episodic training-task simulation to the real testing task of DG. Motivated by the limited number of source domains in real-world medical deployment, we consider the unique task-level overfitting and we propose task augmentation to enhance the variety during training task generation to alleviate it. With the established learning framework, we further exploit a novel meta-objective to regularize the deep embedding of training domains. To validate the effectiveness of the proposed method, we perform experiments on histopathological images and abdominal CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoxiao应助yyauthor采纳,获得20
1秒前
pppsci完成签到,获得积分10
5秒前
jjj应助qiang采纳,获得20
8秒前
小二郎应助科研通管家采纳,获得10
11秒前
凡迪亚比应助科研通管家采纳,获得30
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
bohn123完成签到 ,获得积分10
13秒前
兔子里的乌龟完成签到 ,获得积分10
13秒前
13秒前
qiang完成签到,获得积分10
14秒前
ty心明亮完成签到 ,获得积分10
16秒前
liuyf关注了科研通微信公众号
18秒前
逆时针发布了新的文献求助10
20秒前
20秒前
风趣狗完成签到 ,获得积分10
22秒前
TT工作好认真完成签到 ,获得积分10
23秒前
玖念完成签到,获得积分10
25秒前
32秒前
satan9完成签到,获得积分10
32秒前
Six_seven完成签到,获得积分10
34秒前
海城好人完成签到,获得积分10
38秒前
38秒前
SciGPT应助赵成龙采纳,获得10
38秒前
42秒前
草莓公主bb完成签到,获得积分10
44秒前
lyn发布了新的文献求助10
44秒前
勋勋xxx发布了新的文献求助10
45秒前
47秒前
dasaber完成签到,获得积分10
47秒前
田様应助逆时针采纳,获得10
48秒前
abb完成签到 ,获得积分10
48秒前
多情的灵安完成签到,获得积分10
50秒前
赵成龙发布了新的文献求助10
51秒前
英姑应助知识探索家采纳,获得10
51秒前
52秒前
54秒前
jackZ完成签到,获得积分10
54秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351