Combining max-pooling and wavelet pooling strategies for semantic image segmentation

联营 计算机科学 人工智能 分割 模式识别(心理学) 小波 卷积神经网络 小波 小波变换 图像分割 计算机视觉 机器学习 离散小波变换
作者
André de Souza Brito,Marcelo Bernardes Vieira,Mauren Louise Sguario Coelho de Andrade,Raul Queiroz Feitosa,Gilson A. Giraldi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:183: 115403-115403 被引量:25
标识
DOI:10.1016/j.eswa.2021.115403
摘要

This paper presents a novel multi-pooling architecture generated by combining the advantages of wavelet and max-pooling operations in convolutional neural networks (CNNs), focusing on semantic segmentation tasks. CNNs often use pooling to reduce the number of parameters, improve invariance to certain distortions, and enlarge the receptive field. However, pooling can cause information loss and thus is detrimental to further operations such as feature extraction and analysis. This problem is particularly critical for semantic segmentation, where each pixel of an image is assigned to a specific class to divide the image into disjoint regions of interest. To address this problem, pooling strategies based on wavelets-operations have been proposed with the promise to achieve a better trade-off between receptive field size and computational efficiency. Previous works have confirmed the superiority of wavelet pooling over the traditional one in semantic segmentation tasks. However, we have observed in our computational experiments that the expressive gains reported from the use of wavelet pooling in other segmentation tasks were not observed in the scope of aerial imagery due to imprecision in the segmentation of image details. The combination of wavelet pooling and max-pooling, a solution not yet reported in the literature, can address that issue. Such gap observed in the pooling area motivated the two proposals that are the main contributions of this paper: (a) A new multi-pooling strategy combining wavelet and traditional pooling in a new network structure suitable for aerial image segmentation tasks; (b) Two-stream architectures using the traditional max-pooling and wavelet pooling as streams. These proposals were implemented using the Segnet, a known architecture for semantic segmentation. The computational experiments, based on the IRRG images from the Potsdam and Vaihingen data sets, demonstrated that the proposed architectures surpassed the original Segnet architecture’s performance with results comparable to state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_闾丘枫完成签到,获得积分10
刚刚
王粒发布了新的文献求助10
1秒前
丘比特应助和谐的果汁采纳,获得30
2秒前
2秒前
2秒前
蓝冰完成签到,获得积分10
3秒前
3秒前
wangxiaogua发布了新的文献求助10
4秒前
无花果应助康康采纳,获得10
4秒前
浦肯野应助adeno采纳,获得70
4秒前
汤谷栽扶桑完成签到,获得积分10
5秒前
5秒前
guard发布了新的文献求助10
6秒前
xiangyx发布了新的文献求助10
7秒前
7秒前
Bruce发布了新的文献求助10
8秒前
健壮的惠发布了新的文献求助10
8秒前
8秒前
8秒前
Agernon应助冷静谷兰采纳,获得10
9秒前
10秒前
康康完成签到,获得积分10
11秒前
大模型应助QQQQQQQ采纳,获得10
11秒前
Linazhu发布了新的文献求助10
11秒前
陶醉的纲完成签到,获得积分10
11秒前
12秒前
共享精神应助SAMO2023采纳,获得10
12秒前
12秒前
weirdo发布了新的文献求助10
13秒前
13秒前
ding应助周zhou采纳,获得10
13秒前
传奇3应助冷酸灵采纳,获得10
13秒前
13秒前
Owen应助冷酸灵采纳,获得10
13秒前
汉堡包应助冷酸灵采纳,获得10
14秒前
香蕉觅云应助冷酸灵采纳,获得10
14秒前
科研通AI5应助冷酸灵采纳,获得10
14秒前
领导范儿应助向建采纳,获得10
14秒前
Bpyb发布了新的文献求助10
14秒前
负责蜜蜂发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555076
求助须知:如何正确求助?哪些是违规求助? 3130818
关于积分的说明 9388790
捐赠科研通 2830291
什么是DOI,文献DOI怎么找? 1555914
邀请新用户注册赠送积分活动 726331
科研通“疑难数据库(出版商)”最低求助积分说明 715716