Circumventing the strength–ductility trade-off of β-type titanium alloys by defect engineering during laser powder bed fusion

材料科学 极限抗拉强度 延展性(地球科学) 位错 钛合金 合金 延伸率 产量(工程) 复合材料 冶金 蠕动
作者
Xuan Luo,D.D. Li,Chao Yang,Annett Gebert,H.Z. Lu,Tao Song,Hongwei Ma,L.M. Kang,Yan Long,Y.Y. Li
出处
期刊:Additive manufacturing [Elsevier]
卷期号:51: 102640-102640 被引量:5
标识
DOI:10.1016/j.addma.2022.102640
摘要

In this study, we propose a novel defect engineering strategy for circumventing the strength–ductility trade-off of a β-type Ti–35Nb–7Zr–5Ta alloy and discuss its underlying mechanism. This strategy is based on the simultaneous introduction of dislocations and twins into the alloy structure through the thermal stress generated during additive manufacturing via laser powder bed fusion (LPBF). As a result, the LPBF-fabricated alloy contains high-density dislocations and two different types of nanosized {112}〈111〉 mechanical twins: unique zigzag-shaped and conventional lamellar ones. Interestingly, the produced alloy exhibits a high tensile yield strength of 816 MPa and large elongation of 16.5%, which significantly exceed the published values for other representative β-type titanium alloys fabricated by various material processing methods. Such a high yield strength is predominantly attributed to the introduced defects, and the relative contributions of dislocation strengthening and twin strengthening are equal to 58.0% and 26.1%, respectively. Meanwhile, the large elongation results from the inhibition effect of the produced twins on the dislocation motion as well as from their dislocation pass-through and growth. The obtained results can provide guidelines for the microstructural design and fabrication of novel β-type titanium alloys with excellent mechanical properties by defect engineering during additive manufacturing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cy完成签到,获得积分10
刚刚
飞快的柚子完成签到,获得积分10
1秒前
1秒前
科研小宋完成签到,获得积分10
2秒前
AA发布了新的文献求助10
2秒前
yxa关注了科研通微信公众号
3秒前
Li发布了新的文献求助10
3秒前
嘿嘿发布了新的文献求助10
4秒前
4秒前
liangliang完成签到,获得积分10
5秒前
chen完成签到 ,获得积分10
5秒前
Jojo发布了新的文献求助30
6秒前
6秒前
7秒前
布布发布了新的文献求助10
8秒前
8秒前
失眠的zth发布了新的文献求助10
9秒前
CodeCraft应助112我的采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
苏建平发布了新的文献求助10
10秒前
烟花应助ice采纳,获得10
10秒前
10秒前
量子咖啡完成签到,获得积分20
11秒前
11秒前
顾矜应助77采纳,获得10
11秒前
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
万能图书馆应助银鱼在游采纳,获得10
12秒前
12秒前
高先生完成签到,获得积分10
12秒前
风中的觅风完成签到,获得积分10
13秒前
Akim应助AA采纳,获得10
13秒前
饭勺完成签到,获得积分10
13秒前
DXiao完成签到 ,获得积分10
14秒前
lii发布了新的文献求助10
14秒前
辛勤芷天发布了新的文献求助10
15秒前
15秒前
爆米花应助吃瓜少女采纳,获得10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704391
求助须知:如何正确求助?哪些是违规求助? 5157712
关于积分的说明 15242178
捐赠科研通 4858489
什么是DOI,文献DOI怎么找? 2607261
邀请新用户注册赠送积分活动 1558251
关于科研通互助平台的介绍 1516075