Alibaba Vehicle Routing Algorithms Enable Rapid Pick and Delivery

计算机科学 布线(电子设计自动化) 车辆路径问题 订单(交换) 服务(商务) 运筹学 算法 业务 营销 工程类 计算机网络 财务
作者
Haoyuan Hu,Ying Zhang,Jiangwen Wei,Yang Zhan,Xinhui Zhang,Shaojian Huang,Guangrui Ma,Yuming Deng,Siwei Jiang
出处
期刊:INFORMS journal on applied analytics [Institute for Operations Research and the Management Sciences]
卷期号:52 (1): 27-41 被引量:16
标识
DOI:10.1287/inte.2021.1108
摘要

Alibaba Group pioneered integrated online and offline retail models to allow customers to place online orders of e-commerce and grocery products at its participating stores or restaurants for rapid delivery—in some cases, in as little as 30 minutes after an order has been placed. To meet these service commitments, quick online routing decisions must be made to optimize order picking routes at warehouses and delivery routes for drivers. The solutions to these routing problems are complicated by stringent service commitments, uncertainties, and complex operations in warehouses with limited space. Alibaba has developed a set of algorithms for vehicle routing problems (VRPs), which include an open-architecture adaptive large neighborhood search to support the solution of variants of routing problems and a deep learning-based approach that trains neural network models offline to generate almost instantaneous solutions online. These algorithms have been implemented to solve VRPs in several Alibaba subsidiaries, have generated more than $50 million in annual financial savings, and are applicable to the broader logistics industry. The success of these algorithms has fermented an inner-source community of operations researchers within Alibaba, boosted the confidence of the company’s executives in operations research, and made operations research one of the core competencies of Alibaba Group.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助ava采纳,获得10
2秒前
3秒前
科研蛀虫完成签到 ,获得积分10
3秒前
嘉子完成签到,获得积分10
5秒前
HYLynn完成签到,获得积分10
5秒前
大辉完成签到 ,获得积分10
8秒前
所所应助英勇靖雁采纳,获得10
8秒前
9秒前
小鱼儿发布了新的文献求助10
9秒前
Felix0917完成签到,获得积分10
10秒前
10秒前
JiayanLi完成签到,获得积分20
10秒前
chenchao完成签到,获得积分10
11秒前
13秒前
所所应助汎影采纳,获得10
14秒前
UHPC发布了新的文献求助10
15秒前
15秒前
华仔应助寻光人采纳,获得10
16秒前
赘婿应助罗彩明采纳,获得10
16秒前
16秒前
16秒前
xiaofengyyy发布了新的文献求助10
17秒前
我是老大应助sunyuhao采纳,获得30
18秒前
19秒前
顾矜应助sunwei采纳,获得10
20秒前
SciGPT应助现实的安波采纳,获得10
21秒前
李123发布了新的文献求助10
21秒前
李健的小迷弟应助汎影采纳,获得10
22秒前
23秒前
orixero应助Applause采纳,获得10
23秒前
24秒前
小蘑菇应助太阳采纳,获得10
24秒前
24秒前
哑巴完成签到,获得积分10
24秒前
24秒前
浮游应助科研通管家采纳,获得10
25秒前
三无发布了新的文献求助10
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得30
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340