亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Alibaba Vehicle Routing Algorithms Enable Rapid Pick and Delivery

计算机科学 布线(电子设计自动化) 车辆路径问题 订单(交换) 服务(商务) 运筹学 算法 业务 营销 工程类 计算机网络 财务
作者
Haoyuan Hu,Ying Zhang,Jiangwen Wei,Yang Zhan,Xinhui Zhang,Shaojian Huang,Guangrui Ma,Yuming Deng,Siwei Jiang
出处
期刊:INFORMS journal on applied analytics [Institute for Operations Research and the Management Sciences]
卷期号:52 (1): 27-41 被引量:26
标识
DOI:10.1287/inte.2021.1108
摘要

Alibaba Group pioneered integrated online and offline retail models to allow customers to place online orders of e-commerce and grocery products at its participating stores or restaurants for rapid delivery—in some cases, in as little as 30 minutes after an order has been placed. To meet these service commitments, quick online routing decisions must be made to optimize order picking routes at warehouses and delivery routes for drivers. The solutions to these routing problems are complicated by stringent service commitments, uncertainties, and complex operations in warehouses with limited space. Alibaba has developed a set of algorithms for vehicle routing problems (VRPs), which include an open-architecture adaptive large neighborhood search to support the solution of variants of routing problems and a deep learning-based approach that trains neural network models offline to generate almost instantaneous solutions online. These algorithms have been implemented to solve VRPs in several Alibaba subsidiaries, have generated more than $50 million in annual financial savings, and are applicable to the broader logistics industry. The success of these algorithms has fermented an inner-source community of operations researchers within Alibaba, boosted the confidence of the company’s executives in operations research, and made operations research one of the core competencies of Alibaba Group.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
心随以动完成签到 ,获得积分10
5秒前
科研通AI6.1应助任性学姐采纳,获得10
10秒前
桐桐应助任性学姐采纳,获得10
10秒前
脑洞疼应助任性学姐采纳,获得10
10秒前
852应助任性学姐采纳,获得10
10秒前
桐桐应助任性学姐采纳,获得10
10秒前
科研通AI6.1应助任性学姐采纳,获得10
10秒前
科研通AI6.1应助任性学姐采纳,获得10
10秒前
科研通AI6.1应助任性学姐采纳,获得10
10秒前
桐桐应助任性学姐采纳,获得10
10秒前
隐形曼青应助任性学姐采纳,获得10
10秒前
温暖听兰发布了新的文献求助30
11秒前
12秒前
15秒前
15秒前
Akim应助w。采纳,获得10
15秒前
taku完成签到 ,获得积分10
17秒前
伯云完成签到,获得积分10
17秒前
18秒前
19秒前
azizo完成签到,获得积分10
21秒前
香蕉觅云应助读书的时候采纳,获得10
26秒前
28秒前
Akim应助温婉的不弱采纳,获得10
29秒前
尊敬的雪兰完成签到,获得积分20
33秒前
无极微光应助小吴采纳,获得20
44秒前
小枣完成签到 ,获得积分10
46秒前
57秒前
59秒前
烂漫的涫完成签到 ,获得积分10
1分钟前
温柔锦程发布了新的文献求助10
1分钟前
等意送汝完成签到 ,获得积分10
1分钟前
哑巴和喇叭完成签到 ,获得积分10
1分钟前
kei完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6.1应助panda采纳,获得30
1分钟前
m李完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739381
求助须知:如何正确求助?哪些是违规求助? 5385826
关于积分的说明 15339673
捐赠科研通 4881965
什么是DOI,文献DOI怎么找? 2624032
邀请新用户注册赠送积分活动 1572725
关于科研通互助平台的介绍 1529527