A Unified BRB-Based Framework for Real-Time Health Status Prediction in High-Speed Trains

火车 计算机科学 调度(生产过程) 预测建模 数据挖掘 机器学习 人工智能 实时计算 工程类 运营管理 地图学 地理
作者
Chao Cheng,Yuhong Guo,Jiuhe Wang,Hongtian Chen,Junjie Shao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (9): 9272-9282 被引量:10
标识
DOI:10.1109/tvt.2022.3179448
摘要

The health status of the running gear in high-speed trains changes dynamically with time in a complete life cycle. Running gear systems composed of many coupled components are complex, and health statuses of which are difficult to predict in real time through a traditional health status prediction scheme. Lately, belief rule base (BRB), which is able to combine quantitative information and expert knowledge, has shown excellent expression in modeling complex systems. In the procedure of health status prediction, expert expertise can sufficiently enhance the accuracy and efficiency of this model. Therefore, this paper puts forwards a real-time health status prediction framework based on a multi-layer BRB with priority scheduling strategies for running gears. In the first-layer BRB, a time-series prediction model of multiple module BRB considering complete features is established. In the second-layer model, grey relation analysis (GRA) is employed in priority scheduling strategies of features. The third-layer BRB is used for assessing the health status of running gears by combining the features. In addition, the initial parameters of all module BRB given by experts may not be precise. Accordingly, the initial parameters in the BRB are updated by the recursive algorithm online. Finally, the proposed method is tested on the testing platform in running gears. The results make it clear the proposed method can predict the health status of running gears with much accuracy in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十七。完成签到,获得积分10
刚刚
2秒前
3秒前
Orange应助LCFXR采纳,获得10
3秒前
mm完成签到,获得积分10
7秒前
ding应助omega采纳,获得10
7秒前
Hang发布了新的文献求助30
7秒前
cdercder应助jj采纳,获得10
7秒前
渤海少年发布了新的文献求助10
8秒前
你柿不柿莓柿完成签到,获得积分10
9秒前
花花完成签到,获得积分10
10秒前
塇塇完成签到,获得积分10
11秒前
13秒前
998完成签到,获得积分10
16秒前
大模型应助阿布采纳,获得10
17秒前
17秒前
科研狗发布了新的文献求助10
18秒前
18秒前
汉堡包应助渤海少年采纳,获得10
19秒前
感动城发布了新的文献求助10
19秒前
扶溪筠完成签到,获得积分10
20秒前
998发布了新的文献求助10
21秒前
22秒前
小章完成签到,获得积分10
22秒前
隐形曼青应助多肉丸子采纳,获得10
22秒前
22秒前
蕾蕾完成签到 ,获得积分10
23秒前
24秒前
希望天下0贩的0应助wangyang采纳,获得10
24秒前
时来运转完成签到 ,获得积分10
25秒前
任驰骋发布了新的文献求助10
25秒前
FBI911应助haoliu采纳,获得10
26秒前
jjz发布了新的文献求助10
27秒前
眯眯眼的海完成签到,获得积分10
28秒前
28秒前
Sarah完成签到,获得积分10
28秒前
光亮夏兰发布了新的文献求助10
29秒前
30秒前
30秒前
顾矜应助zuizui采纳,获得10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734603
求助须知:如何正确求助?哪些是违规求助? 3278545
关于积分的说明 10009929
捐赠科研通 2995186
什么是DOI,文献DOI怎么找? 1643254
邀请新用户注册赠送积分活动 781019
科研通“疑难数据库(出版商)”最低求助积分说明 749199