亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Unified BRB-Based Framework for Real-Time Health Status Prediction in High-Speed Trains

火车 计算机科学 调度(生产过程) 预测建模 数据挖掘 机器学习 人工智能 实时计算 工程类 运营管理 地图学 地理
作者
Chao Cheng,Yuhong Guo,Jiuhe Wang,Hongtian Chen,Junjie Shao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (9): 9272-9282 被引量:10
标识
DOI:10.1109/tvt.2022.3179448
摘要

The health status of the running gear in high-speed trains changes dynamically with time in a complete life cycle. Running gear systems composed of many coupled components are complex, and health statuses of which are difficult to predict in real time through a traditional health status prediction scheme. Lately, belief rule base (BRB), which is able to combine quantitative information and expert knowledge, has shown excellent expression in modeling complex systems. In the procedure of health status prediction, expert expertise can sufficiently enhance the accuracy and efficiency of this model. Therefore, this paper puts forwards a real-time health status prediction framework based on a multi-layer BRB with priority scheduling strategies for running gears. In the first-layer BRB, a time-series prediction model of multiple module BRB considering complete features is established. In the second-layer model, grey relation analysis (GRA) is employed in priority scheduling strategies of features. The third-layer BRB is used for assessing the health status of running gears by combining the features. In addition, the initial parameters of all module BRB given by experts may not be precise. Accordingly, the initial parameters in the BRB are updated by the recursive algorithm online. Finally, the proposed method is tested on the testing platform in running gears. The results make it clear the proposed method can predict the health status of running gears with much accuracy in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anna完成签到 ,获得积分10
1秒前
daomaihu完成签到,获得积分10
2秒前
Xiaoxiao完成签到,获得积分20
4秒前
今后应助不喜采纳,获得10
7秒前
酷波er应助向7看齐采纳,获得10
8秒前
Potato发布了新的文献求助10
9秒前
Xiaoxiao发布了新的文献求助30
9秒前
希望天下0贩的0应助Lasse采纳,获得10
10秒前
小二郎应助Sariel采纳,获得10
11秒前
所所应助星空剪影采纳,获得10
12秒前
13秒前
亦hcy发布了新的文献求助10
14秒前
共享精神应助林钰浩采纳,获得10
14秒前
Potato完成签到,获得积分10
17秒前
科研通AI6应助谢琳采纳,获得10
19秒前
不喜发布了新的文献求助10
20秒前
22秒前
25秒前
张明完成签到 ,获得积分10
25秒前
ao完成签到,获得积分10
27秒前
27秒前
ajinjin完成签到,获得积分10
27秒前
27秒前
娇气的幼南完成签到 ,获得积分10
27秒前
27秒前
爆米花应助杜飞采纳,获得10
27秒前
谢琳完成签到,获得积分10
28秒前
林钰浩发布了新的文献求助10
30秒前
Hello应助bunny采纳,获得10
33秒前
34秒前
夹心饼干完成签到,获得积分10
35秒前
35秒前
林钰浩完成签到,获得积分10
35秒前
He关注了科研通微信公众号
36秒前
英姑应助小猫咪采纳,获得10
37秒前
小二郎应助科研通管家采纳,获得10
41秒前
思源应助科研通管家采纳,获得10
41秒前
酷波er应助科研通管家采纳,获得10
41秒前
CipherSage应助科研通管家采纳,获得10
42秒前
领导范儿应助科研通管家采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356411
求助须知:如何正确求助?哪些是违规求助? 4488209
关于积分的说明 13971794
捐赠科研通 4389030
什么是DOI,文献DOI怎么找? 2411357
邀请新用户注册赠送积分活动 1403907
关于科研通互助平台的介绍 1377771