A Unified BRB-Based Framework for Real-Time Health Status Prediction in High-Speed Trains

火车 计算机科学 调度(生产过程) 预测建模 数据挖掘 机器学习 人工智能 实时计算 工程类 地图学 地理 运营管理
作者
Chao Cheng,Yuhong Guo,Jiuhe Wang,Hongtian Chen,Junjie Shao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:71 (9): 9272-9282 被引量:10
标识
DOI:10.1109/tvt.2022.3179448
摘要

The health status of the running gear in high-speed trains changes dynamically with time in a complete life cycle. Running gear systems composed of many coupled components are complex, and health statuses of which are difficult to predict in real time through a traditional health status prediction scheme. Lately, belief rule base (BRB), which is able to combine quantitative information and expert knowledge, has shown excellent expression in modeling complex systems. In the procedure of health status prediction, expert expertise can sufficiently enhance the accuracy and efficiency of this model. Therefore, this paper puts forwards a real-time health status prediction framework based on a multi-layer BRB with priority scheduling strategies for running gears. In the first-layer BRB, a time-series prediction model of multiple module BRB considering complete features is established. In the second-layer model, grey relation analysis (GRA) is employed in priority scheduling strategies of features. The third-layer BRB is used for assessing the health status of running gears by combining the features. In addition, the initial parameters of all module BRB given by experts may not be precise. Accordingly, the initial parameters in the BRB are updated by the recursive algorithm online. Finally, the proposed method is tested on the testing platform in running gears. The results make it clear the proposed method can predict the health status of running gears with much accuracy in real time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣凡阳完成签到,获得积分10
1秒前
1秒前
拼搏的惜天应助贪玩菲音采纳,获得10
2秒前
领导范儿应助米米米采纳,获得10
2秒前
笨笨发布了新的文献求助10
2秒前
研友_VZG7GZ应助xinC采纳,获得10
3秒前
4秒前
学习怪完成签到,获得积分10
4秒前
专注寻菱发布了新的文献求助10
5秒前
shann完成签到,获得积分10
5秒前
爆米花应助1476194342采纳,获得10
5秒前
科研通AI2S应助9999采纳,获得10
6秒前
bkagyin应助ZHANG采纳,获得30
6秒前
郭倩发布了新的文献求助10
7秒前
kaikai发布了新的文献求助10
7秒前
领导范儿应助仙林AK47采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得30
9秒前
科目三应助科研通管家采纳,获得10
9秒前
午见千山应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
隐形曼青应助科研通管家采纳,获得30
10秒前
10秒前
小二郎应助值得采纳,获得10
12秒前
单纯代萱发布了新的文献求助10
12秒前
13秒前
ming完成签到,获得积分10
14秒前
科研通AI2S应助李李采纳,获得10
14秒前
14秒前
adhdff发布了新的文献求助10
15秒前
求求接收吧应助后来采纳,获得20
16秒前
16秒前
赘婿应助郭倩采纳,获得10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228806
求助须知:如何正确求助?哪些是违规求助? 2876566
关于积分的说明 8195759
捐赠科研通 2543848
什么是DOI,文献DOI怎么找? 1374072
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621509