Global analysis of qualitative and quantitative metabolism of Notoginsenoside R1 in rat liver-brain-gut axis based on LC-IT-TOF/MS combing mMDF strategy

新陈代谢 化学 生物转化 葡萄糖醛酸 生物化学 药理学 代谢组学 药物代谢 定量分析(化学) 色谱法 生物 多糖
作者
Kangrui Hu,Changjian Li,Tengjie Yu,Huimin Guo,Hong Sun,Shuying Mao,Zhihao Zhou,Wei Jin,Keanqi Liu,Lin Xie,Guangji Wang,Yan Liang
出处
期刊:Phytomedicine [Elsevier BV]
卷期号:104: 154261-154261 被引量:11
标识
DOI:10.1016/j.phymed.2022.154261
摘要

The metabolism study of active components for traditional Chinese medicine (TCM) in target organs is conducive to clarify the authentic active ingredients. Notoginsenoside R1 (NG-R1), one of the bioactive components of Panax notoginsenoside (PNS), is commonly acknowledged as the characteristic marker of PNS. However, the metabolism of NG-R1 in target organs has not been clarified yet due to the lack of robust technique and approach.The present study aimed to develop a reliable and efficient strategy and technology for revealing the qualitative and quantitative metabolism of active components of TCMs in target organs, and to clarify the biotransformation of NG-R1 in liver-brain-intestinal axis.The metabolic transformation of NG-R1 in the brain gut axis was investigated in the in vitro incubation system of fresh rat brain, liver homogenate, and intestinal flora. To quickly lock the target metabolites, we set the mass defect filter (MDF) in different ranges to screen metabolites with different molecular weight (MW). This strategy was defined as multi-stage MDF (mMDF). In addition, we performed relative quantitative analysis on all metabolites according to the peak area acquired by LC-IT-TOF/MS to overcome the challenge that metabolites are difficult to be quantified due to the lack of standards.When MDF was set at 0.50 to 0.65 to screen metabolites with MW of 900 to 1200 Da, 6 novel metabolites were quickly found, and then identified as glucuronic acid binding, oxidation, dehydrogenation, methylation and hydrogenation products according to their LC and MS characteristics. When setting MDF at 0.42 - 0.52, 6 metabolites with MW of 600 to 900 Da were effectively screened and identified as Rg1, NG-R2, Rh1, Rg1+CH2+2H and Rg1+CH2. To screen the metabolites with MW of 300 to 600 Da, MDF was set at 0.25 - 0.42, and 4 novel metabolites were screened rapidly. The results of quantitative metabolism suggested that intestinal flora was the main metabolic site of NG-R1 in rat, and more than 60% of NG-R1 was converted to Rg1 by deglycosylation in the intestinal flora.The mMDF strategy can significantly improve the research efficiency of qualitative metabolism of saponins. Although NG-R1 could be transformed into a variety of metabolites in rat liver and brain homogenate, it still existed mainly in prototype form. In the rat flora, NG-R1 mainly existed in the form of deglycosylated metabolite Rg1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
css完成签到,获得积分10
2秒前
Liufgui应助Re采纳,获得20
2秒前
Nugget完成签到,获得积分10
2秒前
yar应助潇湘雪月采纳,获得10
3秒前
宇宇发布了新的文献求助10
3秒前
shufessm完成签到,获得积分0
5秒前
5秒前
9秒前
幸福大白发布了新的文献求助30
9秒前
10秒前
肿瘤柳叶刀完成签到,获得积分10
11秒前
12秒前
12秒前
xxddw发布了新的文献求助10
13秒前
15秒前
GS11完成签到,获得积分10
16秒前
邓紫依完成签到,获得积分10
17秒前
cdytjt发布了新的文献求助60
17秒前
ai zs发布了新的文献求助10
17秒前
搜集达人应助zyw采纳,获得10
18秒前
19秒前
攀攀完成签到,获得积分10
20秒前
20秒前
Aprilapple发布了新的文献求助10
21秒前
张雯思发布了新的文献求助10
21秒前
22秒前
越野蟹关注了科研通微信公众号
23秒前
空军完成签到 ,获得积分10
25秒前
25秒前
酷波er应助moji采纳,获得10
25秒前
27秒前
传奇3应助打我呀采纳,获得30
28秒前
28秒前
Aprilapple发布了新的文献求助10
31秒前
31秒前
32秒前
zyw发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174