Three-dimensional DEM-CFD simulation of a lab-scale fluidized bed to support the development of two-fluid model approach

机械 计算流体力学 离散元法 粒子(生态学) 流化床 CFD-DEM公司 工作(物理) 双流体模型 跟踪(教育) 材料科学 物理 经典力学 热力学 地质学 心理学 教育学 海洋学
作者
Ainur Nigmetova,Enrica Masi,Olivier Simonin,Yann Dufresne,Vincent Moureau
出处
期刊:International Journal of Multiphase Flow [Elsevier]
卷期号:156: 104189-104189 被引量:9
标识
DOI:10.1016/j.ijmultiphaseflow.2022.104189
摘要

The present work is dedicated to the numerical study of the hydrodynamics of a pressurized fluidized-bed using an Euler–Lagrange approach, with the goal to gain insight into the Two-Fluid Model (TFM) approach. The gas phase is modeled by filtered Navier–Stokes equations, and the solid particles are tracked using a Discrete Element Method (DEM). Collisions are handled using a soft-sphere model. Numerical predictions of the mean (time-averaged) vertical particle velocity are compared with experimental measurements available from the literature, obtained from a Positron Emission Particle Tracking (PEPT) technique. In addition, DEM-Computational Fluid Dynamics (CFD) results are extensively compared with predictions from TFM numerical simulations. Results accounting for inelastic frictionless particle–particle collisions show a very good agreement with the experimental data and TFM results in the central zone of the reactor. In the near wall region the numerical simulation overestimates the downward particle velocity with respect to the experimental measurements, especially when the particle–wall friction is neglected. The influence of the friction at the wall is therefore further investigated and a local analysis of the particle–wall interactions is carried out. It is demonstrated that the long sustained contacts of particle assemblies with the wall in such a dense regime play a crucial role on the overall bed behavior. Therefore, it is recommended that this effect is taken into account in the boundary conditions of a TFM approach when it is used to predict bubbling fluidized beds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
超级白开水完成签到 ,获得积分10
刚刚
刚刚
刚刚
jzy完成签到,获得积分10
1秒前
詹雪晴发布了新的文献求助10
1秒前
包容的忆枫完成签到,获得积分20
1秒前
lilith发布了新的文献求助10
2秒前
2秒前
bai发布了新的文献求助10
2秒前
arya完成签到,获得积分10
2秒前
2秒前
3秒前
晴空万里完成签到 ,获得积分10
3秒前
小王同学完成签到 ,获得积分10
3秒前
3秒前
Chenly发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
热苏打完成签到,获得积分10
5秒前
科研通AI5应助俭朴的猫咪采纳,获得10
5秒前
HHH完成签到,获得积分20
5秒前
cyy发布了新的文献求助10
5秒前
6秒前
6秒前
吴侬软语完成签到 ,获得积分10
6秒前
大山发布了新的文献求助10
6秒前
Akim应助36456657采纳,获得10
6秒前
Flac发布了新的文献求助10
6秒前
ss发布了新的文献求助10
7秒前
hhh完成签到,获得积分10
7秒前
归尘发布了新的文献求助10
8秒前
8秒前
ccc完成签到,获得积分10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339