亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BERT-Promoter: An improved sequence-based predictor of DNA promoter using BERT pre-trained model and SHAP feature selection

发起人 编码器 计算机科学 特征选择 人工智能 机器学习 编码 计算生物学 DNA测序 抄写(语言学) 基因 DNA 生物 遗传学 基因表达 操作系统 哲学 语言学
作者
Nguyen Quoc Khanh Le,Quang‐Thai Ho,Van-Nui Nguyen,Jung‐Su Chang
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:99: 107732-107732 被引量:55
标识
DOI:10.1016/j.compbiolchem.2022.107732
摘要

A promoter is a sequence of DNA that initializes the process of transcription and regulates whenever and wherever genes are expressed in the organism. Because of its importance in molecular biology, identifying DNA promoters are challenging to provide useful information related to its functions and related diseases. Several computational models have been developed to early predict promoters from high-throughput sequencing over the past decade. Although some useful predictors have been proposed, there remains short-falls in those models and there is an urgent need to enhance the predictive performance to meet the practice requirements. In this study, we proposed a novel architecture that incorporated transformer natural language processing (NLP) and explainable machine learning to address this problem. More specifically, a pre-trained Bidirectional Encoder Representations from Transformers (BERT) model was employed to encode DNA sequences, and SHapley Additive exPlanations (SHAP) analysis served as a feature selection step to look at the top-rank BERT encodings. At the last stage, different machine learning classifiers were implemented to learn the top features and produce the prediction outcomes. This study not only predicted the DNA promoters but also their activities (strong or weak promoters). Overall, several experiments showed an accuracy of 85.5 % and 76.9 % for these two levels, respectively. Our performance showed a superiority to previously published predictors on the same dataset in most measurement metrics. We named our predictor as BERT-Promoter and it is freely available at https://github.com/khanhlee/bert-promoter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一切随风完成签到,获得积分10
2秒前
3秒前
外向蜡烛完成签到,获得积分10
7秒前
keyanzhang完成签到 ,获得积分10
11秒前
14秒前
18秒前
19秒前
我是老大应助泽霖采纳,获得10
20秒前
可爱的函函应助xiongyh10采纳,获得10
21秒前
22秒前
梅者如西发布了新的文献求助10
25秒前
mashichuang发布了新的文献求助10
25秒前
28秒前
28秒前
rrrrrrry发布了新的文献求助10
30秒前
KTaoL发布了新的文献求助10
31秒前
白綀完成签到 ,获得积分10
38秒前
47秒前
上官若男应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
852应助KTaoL采纳,获得10
51秒前
liu应助梅者如西采纳,获得10
55秒前
56秒前
蘇q完成签到 ,获得积分10
1分钟前
1分钟前
科目三应助萍萍子采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
xiongyh10发布了新的文献求助10
1分钟前
萍萍子发布了新的文献求助10
1分钟前
美满傲南发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
liu应助xiongyh10采纳,获得10
1分钟前
1分钟前
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261507
求助须知:如何正确求助?哪些是违规求助? 2902266
关于积分的说明 8319539
捐赠科研通 2572204
什么是DOI,文献DOI怎么找? 1397447
科研通“疑难数据库(出版商)”最低求助积分说明 653721
邀请新用户注册赠送积分活动 632223