Net‐based thermal‐fluid model and hybrid optimization of cooling channels

压力降 计算流体力学 加权 材料科学 遗传算法 机械 热的 频道(广播) 数学优化 计算机科学 拓扑(电路) 数学 热力学 物理 计算机网络 组合数学 声学
作者
Jun Liu,Renfu Li,Kun Wang,Jianguo Zheng
出处
期刊:International Journal for Numerical Methods in Engineering [Wiley]
卷期号:123 (22): 5442-5472 被引量:1
标识
DOI:10.1002/nme.7075
摘要

Abstract This study aims to propose a hybrid optimization method for cooling channels based on the improved net‐based thermal‐fluid model. The channel topology was optimized through the genetic algorithm (GA), whereas the channel diameter and node position were optimized using the moving asymptote method (MMA). The linear combination of the average temperature and pressure drop was defined as the objective function. Three‐dimensional computational fluid dynamics (CFD) simulations were performed to verify the physical fields of the optimized results. The optimized results indicated that, as the weighting factor ( w ) for the average temperature increased, the flow distribution was more reasonable and uniform, effectively decreasing the average temperature at the cost of higher pressure drops. In comparison with the optimization entirely based on GA, the hybrid optimization could yield a similar and efficient cooling performance with lower time‐consuming. Moreover, the optimized results obtained under the suitable objective could achieve the better thermal performance at a lower pressure drop in comparison with the conventional serpentine‐shaped channel layout. Finally, the hybrid optimization method used in this article was compared with the conventional density approach, and the former could obtain the clear and complex channel distribution with greatly reduced computational time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
1秒前
小盘子发布了新的文献求助10
1秒前
岁大爷发布了新的文献求助50
1秒前
Hello应助丘先生采纳,获得10
2秒前
汉堡包应助陶醉书包采纳,获得10
2秒前
2秒前
3秒前
3秒前
ssj发布了新的文献求助10
3秒前
东方三问应助漂亮蘑菇采纳,获得10
4秒前
5秒前
5秒前
幸福的千琴完成签到,获得积分10
5秒前
6秒前
xupt唐僧发布了新的文献求助10
7秒前
修fei完成签到 ,获得积分10
7秒前
希望天下0贩的0应助axunQAQ采纳,获得10
7秒前
7Bao完成签到,获得积分20
8秒前
傲娇大船完成签到,获得积分10
8秒前
粗犷的芝发布了新的文献求助10
8秒前
夏侯凌寒发布了新的文献求助10
9秒前
丘先生完成签到,获得积分10
10秒前
上官若男应助云襄采纳,获得10
10秒前
方羽发布了新的文献求助10
10秒前
杳鸢应助yinghan1212采纳,获得10
11秒前
墩墩发布了新的文献求助100
11秒前
11秒前
ding应助schun采纳,获得10
12秒前
hs完成签到,获得积分10
13秒前
14秒前
16秒前
arui完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
小蘑菇应助勤恳逍遥采纳,获得10
18秒前
18秒前
在水一方应助季心安采纳,获得10
19秒前
壮观问寒应助史一帆采纳,获得10
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3389948
求助须知:如何正确求助?哪些是违规求助? 3001763
关于积分的说明 8799972
捐赠科研通 2688367
什么是DOI,文献DOI怎么找? 1472537
科研通“疑难数据库(出版商)”最低求助积分说明 681001
邀请新用户注册赠送积分活动 673707