A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (tropical river, India)

地形湿度指数 水流动力 大洪水 随机森林 地形 水文学(农业) 多重共线性 均方误差 排水密度 流域 统计 数学 环境科学 机器学习 计算机科学 地图学 数字高程模型 地理 地质学 遥感 回归分析 沉积物 地貌学 岩土工程 考古
作者
Md. Hasanuzzaman,Aznarul Islam,Biswajit Bera,Pravat Kumar Shit
出处
期刊:Physics And Chemistry Of The Earth, Parts A/b/c [Elsevier BV]
卷期号:127: 103198-103198
标识
DOI:10.1016/j.pce.2022.103198
摘要

Flood is the most common phenomenon causing extensive disruption to the environment, socio-economy, infrastructure and many other aspects of human life. Flood susceptibility mapping (FSM) is a crucial step for policymakers in disaster management. However, in the present study, we applied three ensemble machine learning models, namely, Random Forest (RF), Naive Bayes (NB), and Extreme Gradient Boosting (XGB) for FSM of Silabati river (tropical river, India). A total of 500 historical flood points and field observations with considering set of twelve flood influencing factors (rainfall, elevation, slope, curvature, stream power index (SPI), Sediment Transport Index (STI), Terrain ruggedness index (TRI), topographic wetness index (TWI), clay content in soil (SC), distance from the river (DFR), drainage density (DD), and land use and land cover (LULC) for generating the training and validation datasets. To investigate and perceive the flood vulnerability of the study basin, five factors, such as elevation, DD, rainfall, DFR and SC turn out to be the most dominating factors out of the adopted twelve factors considered for the present study in all models. It is found that an area of around 36.08% of the total basin comes under the very high to high FSM. The prediction ability and performance efficiency of three models were comparison and validation measures by statistical techniques such as multicollinearity diagnosis test, Kappa index, MAE, (Mean absolute error), RMSE (Root mean square error), Pearson's correlation coefficients and receiver operating characteristic (ROC). The highest ROC was achieved by the RF model (84.7%), followed by the XGB model (83.1%), and NB model (82.1%) respectively. The RF model performs better for FSM then the other models. • Ensemble three machine learning algorithms were applied for flood susceptibility mapping. • The performance efficiency test of random forest (RF), naive bayes (NB), and extreme gradient boosting (XGB) techniques. • RF machine learning is superior for flood susceptibility mapping. • Multicollinearity diagnosis test, RMSE and ROC were used for comparing the flood susceptibility models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助奖品肉麻膏耶采纳,获得10
刚刚
指数爆炸发布了新的文献求助10
1秒前
mwzeng发布了新的文献求助10
1秒前
赘婿应助ziyiziyi采纳,获得10
1秒前
李慕溪发布了新的文献求助20
1秒前
JACKPAN完成签到,获得积分10
1秒前
西瓜妹发布了新的文献求助10
3秒前
科研通AI5应助身处人海采纳,获得10
4秒前
Hao完成签到,获得积分10
5秒前
酷波er应助陈傲雪采纳,获得10
5秒前
顺利的小懒猪完成签到 ,获得积分10
6秒前
一棵树莓给一棵树莓的求助进行了留言
6秒前
小蘑菇应助JACKPAN采纳,获得10
9秒前
YoroYoshi完成签到,获得积分10
11秒前
11秒前
11秒前
科研通AI5应助mwzeng采纳,获得10
11秒前
12秒前
13秒前
量子星尘发布了新的文献求助50
14秒前
Gzh_NJ完成签到,获得积分10
14秒前
YoroYoshi发布了新的文献求助10
14秒前
生动路人发布了新的文献求助10
15秒前
lucy发布了新的文献求助10
15秒前
15秒前
15秒前
mochi发布了新的文献求助10
16秒前
烤冷面应助Candice采纳,获得10
16秒前
17秒前
ALL发布了新的文献求助10
18秒前
大模型应助青筠采纳,获得10
18秒前
durian发布了新的文献求助10
18秒前
19秒前
冷酷向薇发布了新的文献求助10
20秒前
丫丫完成签到 ,获得积分20
20秒前
20秒前
扶摇完成签到 ,获得积分10
20秒前
闵卷完成签到,获得积分10
20秒前
且徐行完成签到,获得积分10
21秒前
怡然太阳发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089378
求助须知:如何正确求助?哪些是违规求助? 4304127
关于积分的说明 13413480
捐赠科研通 4129704
什么是DOI,文献DOI怎么找? 2261721
邀请新用户注册赠送积分活动 1265791
关于科研通互助平台的介绍 1200360