亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (tropical river, India)

地形湿度指数 水流动力 大洪水 随机森林 地形 水文学(农业) 多重共线性 均方误差 排水密度 流域 统计 数学 环境科学 机器学习 计算机科学 地图学 数字高程模型 地理 地质学 遥感 回归分析 沉积物 地貌学 岩土工程 考古
作者
Md. Hasanuzzaman,Aznarul Islam,Biswajit Bera,Pravat Kumar Shit
出处
期刊:Physics And Chemistry Of The Earth, Parts A/b/c [Elsevier BV]
卷期号:127: 103198-103198
标识
DOI:10.1016/j.pce.2022.103198
摘要

Flood is the most common phenomenon causing extensive disruption to the environment, socio-economy, infrastructure and many other aspects of human life. Flood susceptibility mapping (FSM) is a crucial step for policymakers in disaster management. However, in the present study, we applied three ensemble machine learning models, namely, Random Forest (RF), Naive Bayes (NB), and Extreme Gradient Boosting (XGB) for FSM of Silabati river (tropical river, India). A total of 500 historical flood points and field observations with considering set of twelve flood influencing factors (rainfall, elevation, slope, curvature, stream power index (SPI), Sediment Transport Index (STI), Terrain ruggedness index (TRI), topographic wetness index (TWI), clay content in soil (SC), distance from the river (DFR), drainage density (DD), and land use and land cover (LULC) for generating the training and validation datasets. To investigate and perceive the flood vulnerability of the study basin, five factors, such as elevation, DD, rainfall, DFR and SC turn out to be the most dominating factors out of the adopted twelve factors considered for the present study in all models. It is found that an area of around 36.08% of the total basin comes under the very high to high FSM. The prediction ability and performance efficiency of three models were comparison and validation measures by statistical techniques such as multicollinearity diagnosis test, Kappa index, MAE, (Mean absolute error), RMSE (Root mean square error), Pearson's correlation coefficients and receiver operating characteristic (ROC). The highest ROC was achieved by the RF model (84.7%), followed by the XGB model (83.1%), and NB model (82.1%) respectively. The RF model performs better for FSM then the other models. • Ensemble three machine learning algorithms were applied for flood susceptibility mapping. • The performance efficiency test of random forest (RF), naive bayes (NB), and extreme gradient boosting (XGB) techniques. • RF machine learning is superior for flood susceptibility mapping. • Multicollinearity diagnosis test, RMSE and ROC were used for comparing the flood susceptibility models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
CCC1230发布了新的文献求助10
11秒前
12秒前
35秒前
libob发布了新的文献求助10
40秒前
Hello应助CCC1230采纳,获得10
47秒前
CCC1230完成签到,获得积分10
59秒前
汉堡包应助Pengzhuhuai采纳,获得10
1分钟前
完美世界应助失眠奥特曼采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
GuiSHda完成签到,获得积分10
2分钟前
2分钟前
Pengzhuhuai发布了新的文献求助10
2分钟前
Pengzhuhuai完成签到,获得积分10
2分钟前
Augustines完成签到,获得积分10
2分钟前
2分钟前
2分钟前
929发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Pony完成签到,获得积分10
4分钟前
失眠奥特曼完成签到,获得积分10
4分钟前
4分钟前
4分钟前
称心芷巧完成签到,获得积分10
4分钟前
5分钟前
酷波er应助称心芷巧采纳,获得50
5分钟前
自己发布了新的文献求助10
5分钟前
5分钟前
CodeCraft应助自己采纳,获得10
5分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
搜集达人应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155657
捐赠科研通 3245410
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216