已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A comparison of performance measures of three machine learning algorithms for flood susceptibility mapping of river Silabati (tropical river, India)

地形湿度指数 水流动力 大洪水 随机森林 地形 水文学(农业) 多重共线性 均方误差 排水密度 流域 统计 数学 环境科学 机器学习 计算机科学 地图学 数字高程模型 地理 地质学 遥感 回归分析 沉积物 地貌学 岩土工程 考古
作者
Md. Hasanuzzaman,Aznarul Islam,Biswajit Bera,Pravat Kumar Shit
出处
期刊:Physics And Chemistry Of The Earth, Parts A/b/c [Elsevier]
卷期号:127: 103198-103198
标识
DOI:10.1016/j.pce.2022.103198
摘要

Flood is the most common phenomenon causing extensive disruption to the environment, socio-economy, infrastructure and many other aspects of human life. Flood susceptibility mapping (FSM) is a crucial step for policymakers in disaster management. However, in the present study, we applied three ensemble machine learning models, namely, Random Forest (RF), Naive Bayes (NB), and Extreme Gradient Boosting (XGB) for FSM of Silabati river (tropical river, India). A total of 500 historical flood points and field observations with considering set of twelve flood influencing factors (rainfall, elevation, slope, curvature, stream power index (SPI), Sediment Transport Index (STI), Terrain ruggedness index (TRI), topographic wetness index (TWI), clay content in soil (SC), distance from the river (DFR), drainage density (DD), and land use and land cover (LULC) for generating the training and validation datasets. To investigate and perceive the flood vulnerability of the study basin, five factors, such as elevation, DD, rainfall, DFR and SC turn out to be the most dominating factors out of the adopted twelve factors considered for the present study in all models. It is found that an area of around 36.08% of the total basin comes under the very high to high FSM. The prediction ability and performance efficiency of three models were comparison and validation measures by statistical techniques such as multicollinearity diagnosis test, Kappa index, MAE, (Mean absolute error), RMSE (Root mean square error), Pearson's correlation coefficients and receiver operating characteristic (ROC). The highest ROC was achieved by the RF model (84.7%), followed by the XGB model (83.1%), and NB model (82.1%) respectively. The RF model performs better for FSM then the other models. • Ensemble three machine learning algorithms were applied for flood susceptibility mapping. • The performance efficiency test of random forest (RF), naive bayes (NB), and extreme gradient boosting (XGB) techniques. • RF machine learning is superior for flood susceptibility mapping. • Multicollinearity diagnosis test, RMSE and ROC were used for comparing the flood susceptibility models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
周神完成签到,获得积分10
3秒前
3秒前
Anonymous发布了新的文献求助10
4秒前
哇呀呀完成签到 ,获得积分10
4秒前
科研通AI2S应助12591采纳,获得10
5秒前
周神发布了新的文献求助30
6秒前
6秒前
9秒前
赫灵竹发布了新的文献求助10
14秒前
Limerencia完成签到,获得积分10
19秒前
清爽天川完成签到 ,获得积分10
21秒前
qwertyui完成签到,获得积分10
21秒前
26秒前
liang发布了新的文献求助10
28秒前
31秒前
开放笑容发布了新的文献求助10
35秒前
qianchimo完成签到 ,获得积分10
36秒前
shaft完成签到 ,获得积分10
36秒前
38秒前
KK发布了新的文献求助30
39秒前
雪生在无人荒野完成签到,获得积分10
43秒前
william关注了科研通微信公众号
44秒前
48秒前
LLL完成签到,获得积分10
53秒前
55秒前
56秒前
asaki完成签到,获得积分10
57秒前
58秒前
qiandi完成签到,获得积分10
1分钟前
1分钟前
66发发布了新的文献求助50
1分钟前
linmu完成签到 ,获得积分10
1分钟前
ERIS发布了新的文献求助10
1分钟前
小月亮发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助1026采纳,获得10
1分钟前
David完成签到 ,获得积分10
1分钟前
小月亮完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3384358
求助须知:如何正确求助?哪些是违规求助? 2998411
关于积分的说明 8778640
捐赠科研通 2683920
什么是DOI,文献DOI怎么找? 1470075
科研通“疑难数据库(出版商)”最低求助积分说明 679585
邀请新用户注册赠送积分活动 671945