Extracting keyframes of breast ultrasound video using deep reinforcement learning

计算机科学 人工智能 强化学习 光学(聚焦) 过程(计算) 班级(哲学) 深度学习 计算机视觉 模式识别(心理学) 机器学习 物理 光学 操作系统
作者
Ruobing Huang,Qilong Ying,Zehui Lin,Zijie Zheng,Long Tan,Guoxue Tang,Qi Zhang,Man Luo,Xiuwen Yi,Pan Liu,Weiwei Pan,Jiayi Wu,Baoming Luo,Dong Ni
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:80: 102490-102490 被引量:29
标识
DOI:10.1016/j.media.2022.102490
摘要

Ultrasound (US) plays a vital role in breast cancer screening, especially for women with dense breasts. Common practice requires a sonographer to recognize key diagnostic features of a lesion and record a single or several representative frames during the dynamic scanning before performing the diagnosis. However, existing computer-aided diagnosis tools often focus on the final diagnosis process while neglecting the influence of the keyframe selection. Moreover, the lesions could have highly-irregular shapes, varying sizes, and locations during the scanning. The recognition of diagnostic characteristics associated with the lesions is challenging and also faces severe class imbalance. To address these, we proposed a reinforcement learning-based framework that can automatically extract keyframes from breast US videos of unfixed length. It is equipped with a detection-based nodule filtering module and a novel reward mechanism that can integrate anatomical and diagnostic features of the lesions into keyframe searching. A simple yet effective loss function was also designed to alleviate the class imbalance issue. Extensive experiments illustrate that the proposed framework can benefit from both innovations and is able to generate representative keyframe sequences in various screening conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
科研通AI2S应助贷款做科研采纳,获得10
2秒前
3秒前
李健应助大鸡腿采纳,获得10
3秒前
lyz666发布了新的文献求助10
3秒前
乐乐应助小樊同学采纳,获得10
4秒前
ossantu发布了新的文献求助10
7秒前
7秒前
领导范儿应助hins采纳,获得10
8秒前
8秒前
9秒前
经济完成签到,获得积分10
11秒前
11秒前
鲨猫收藏家完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
勤劳涵山发布了新的文献求助10
16秒前
彭于晏应助不二采纳,获得10
16秒前
李李李发布了新的文献求助10
16秒前
17秒前
烟花应助清脆的连虎采纳,获得10
17秒前
魏伯安发布了新的文献求助10
18秒前
鲨鱼辣椒吼吼哈完成签到,获得积分10
20秒前
20秒前
Youtenter发布了新的文献求助10
21秒前
21秒前
pretty完成签到 ,获得积分10
22秒前
清晾油发布了新的文献求助10
22秒前
orixero应助WYQ采纳,获得10
22秒前
情怀应助hins采纳,获得80
22秒前
冰糖雪梨完成签到,获得积分10
23秒前
23秒前
所所应助Tq采纳,获得10
23秒前
25秒前
guozizi发布了新的文献求助10
26秒前
26秒前
英姑应助CanaanWang1021采纳,获得10
27秒前
马赫发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753383
求助须知:如何正确求助?哪些是违规求助? 3296944
关于积分的说明 10096592
捐赠科研通 3011636
什么是DOI,文献DOI怎么找? 1654098
邀请新用户注册赠送积分活动 788610
科研通“疑难数据库(出版商)”最低求助积分说明 752947