Heat and mass transfer in hygroscopic hydrogels

自愈水凝胶 材料科学 解吸 传质 热导率 水蒸气 化学工程 吸附 热扩散率 传热 热力学 复合材料 吸附 高分子化学 化学 有机化学 物理 工程类
作者
Carlos D. Díaz‐Marín,Lenan Zhang,Bachir El Fil,Zhengmao Lu,Mohammed Alshrah,Jeffrey C. Grossman,Evelyn N. Wang
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:195: 123103-123103 被引量:31
标识
DOI:10.1016/j.ijheatmasstransfer.2022.123103
摘要

Sorption and desorption with hygroscopic hydrogels hold significant promise for thermal management, passive cooling, thermal energy storage, and atmospheric water harvesting. However, a comprehensive understanding of the energy and mass transport mechanisms in hygroscopic hydrogels remains missing, impeding accurate modeling and optimization. In this work, we develop a model for the simultaneous vapor, water, and heat transfer in hygroscopic hydrogels during sorption and desorption processes. We show that by considering vapor diffusion in the hydrogel micropores, water diffusion in the polymer mesh, and heat transfer in the porous hydrogel, we can accurately capture experimentally observed thermally-driven desorption rates in these hydrogels. Furthermore, we consider three typical operating configurations of hydrogels and elucidate the differences in the transport mechanisms depending on the configuration. Finally, for each of these configurations, we identify key design parameters, including hydrogel thickness, hydrogel shear modulus, heat transfer coefficient, and thermal conductivity, and we parametrically show that by varying these parameters, a hygroscopic hydrogel can desorb up to 128.5%, 14.9%, 69.7%, and 9.6% more water, respectively, relative to the initial water content. This work provides a generic framework to model sorption and desorption processes in hygroscopic hydrogels which can guide the design and optimization in applications of thermal management, passive cooling, thermal energy storage, and atmospheric water harvesting with hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量无他发布了新的文献求助10
1秒前
难过的溪灵完成签到,获得积分10
1秒前
陈晨完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
共享精神应助另一种感觉采纳,获得10
4秒前
劲秉应助yhw采纳,获得10
5秒前
科研通AI5应助tongxiaofang采纳,获得10
5秒前
张1完成签到 ,获得积分10
6秒前
归尘发布了新的文献求助50
6秒前
7秒前
冷艳宛白完成签到,获得积分10
7秒前
forever发布了新的文献求助10
7秒前
7秒前
Ava应助活泼洙采纳,获得10
7秒前
CodeCraft应助高大的蚂蚁采纳,获得10
8秒前
curtisness应助整齐的忆彤采纳,获得10
9秒前
errui完成签到,获得积分10
9秒前
Guthrie发布了新的文献求助10
9秒前
10秒前
木木三发布了新的文献求助30
10秒前
10秒前
小蚂蚁森完成签到,获得积分10
11秒前
风声疏狂关注了科研通微信公众号
11秒前
12秒前
子伊完成签到 ,获得积分10
13秒前
在水一方应助机灵的听荷采纳,获得10
13秒前
14秒前
星威应助热情的戾采纳,获得10
14秒前
月月鸟发布了新的文献求助10
16秒前
情怀应助强健的寒风采纳,获得10
16秒前
16秒前
ying完成签到 ,获得积分10
16秒前
foxp3完成签到,获得积分10
16秒前
helpme完成签到,获得积分10
18秒前
changli完成签到,获得积分10
18秒前
18秒前
FashionBoy应助柔弱的筮采纳,获得10
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476745
求助须知:如何正确求助?哪些是违规求助? 3068336
关于积分的说明 9107499
捐赠科研通 2759802
什么是DOI,文献DOI怎么找? 1514301
邀请新用户注册赠送积分活动 700193
科研通“疑难数据库(出版商)”最低求助积分说明 699379