双金属
甲烷化
异质结
材料科学
催化作用
热电子
选择性
光化学
光电子学
半导体
纳米颗粒
金属
等离子体子
吸附
化学
化学工程
纳米技术
电子
物理化学
冶金
物理
有机化学
工程类
复合材料
量子力学
作者
Xibo Zhang,Huijie Liu,Yaqin Wang,Shuangli Yang,Qian Chen,Zhiying Zhao,Ye Yang,Qin Kuang,Zhaoxiong Xie
标识
DOI:10.1016/j.cej.2022.136482
摘要
Hot-electron-induced CO2 hydrogenation is a promising pathway for solar-to-chemical energy conversion under mild conditions. Herein, we designed a unique “antenna–reactor” architecture with surface alloyed [email protected] plasmonic nanoparticles (NPs) loaded on g-C3N4 ([email protected]/g-C3N4) to achieve high-efficiency CO2 methanation under light-heat dual activation. Remarkably, [email protected]/g-C3N4 exhibits a high CH4 production rate (103 μmol/g/h) with 98.4% selectivity under light at 150 °C. The activity is 11 times higher than that in dark, and also 12 and 2.6 times that of Au/g-C3N4 and [email protected]/g-C3N4, respectively. The modified Ru atoms significantly boost the H2, CO2 and CO adsorption capacity, facilitating the selective transformation of CO2 to CH4. In situ DRIFT analysis indicated that CO2 is converted to CO and then adsorbed on the metal surface for further hydrogenation to CH4. The femtosecond transient absorption spectroscopic study further reveals that the synergy between the surface structure and the metal–semiconductor heterojunction provides a longer time window for hot electrons to promote the chemical reaction. This work provides new insights for plasmonic nanostructures to efficiently activate CO2 at low temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI