亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for the prediction of acute kidney injury in patients with sepsis

支持向量机 败血症 随机森林 决策树 人工智能 急性肾损伤 机器学习 人工神经网络 逻辑回归 梯度升压 接收机工作特性 沙发评分 计算机科学 医学 特征选择 重症监护医学 SAPS II型 重症监护室 阿帕奇II 内科学
作者
Suru Yue,Shasha Li,Xueying Huang,Jie Liu,Xuefei Hou,Yumei Zhao,Dongdong Niu,Jane Shen-Gunther,Wenkai Tan,Jiayuan Wu
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:20 (1) 被引量:81
标识
DOI:10.1186/s12967-022-03364-0
摘要

Abstract Background Acute kidney injury (AKI) is the most common and serious complication of sepsis, accompanied by high mortality and disease burden. The early prediction of AKI is critical for timely intervention and ultimately improves prognosis. This study aims to establish and validate predictive models based on novel machine learning (ML) algorithms for AKI in critically ill patients with sepsis. Methods Data of patients with sepsis were extracted from the Medical Information Mart for Intensive Care III (MIMIC- III) database. Feature selection was performed using a Boruta algorithm. ML algorithms such as logistic regression (LR), k -nearest neighbors (KNN), support vector machine (SVM), decision tree, random forest, Extreme Gradient Boosting (XGBoost), and artificial neural network (ANN) were applied for model construction by utilizing tenfold cross-validation. The performances of these models were assessed in terms of discrimination, calibration, and clinical application. Moreover, the discrimination of ML-based models was compared with those of Sequential Organ Failure Assessment (SOFA) and the customized Simplified Acute Physiology Score (SAPS) II model. Results A total of 3176 critically ill patients with sepsis were included for analysis, of which 2397 cases (75.5%) developed AKI during hospitalization. A total of 36 variables were selected for model construction. The models of LR, KNN, SVM, decision tree, random forest, ANN, XGBoost, SOFA and SAPS II score were established and obtained area under the receiver operating characteristic curves of 0.7365, 0.6637, 0.7353, 0.7492, 0.7787, 0.7547, 0.821, 0.6457 and 0.7015, respectively. The XGBoost model had the best predictive performance in terms of discrimination, calibration, and clinical application among all models. Conclusion The ML models can be reliable tools for predicting AKI in septic patients. The XGBoost model has the best predictive performance, which can be used to assist clinicians in identifying high-risk patients and implementing early interventions to reduce mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助2368372311采纳,获得10
1秒前
4秒前
kk_1315完成签到,获得积分10
15秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
山野完成签到 ,获得积分10
20秒前
ding应助不安的毛巾采纳,获得10
23秒前
Lucas应助Wenyilong采纳,获得10
23秒前
2368372311发布了新的文献求助10
24秒前
翟半仙完成签到,获得积分20
24秒前
25秒前
30秒前
37秒前
38秒前
luster发布了新的文献求助10
41秒前
nicholas发布了新的文献求助10
43秒前
共享精神应助爱上写文章采纳,获得10
1分钟前
光亮的香魔完成签到,获得积分10
1分钟前
1分钟前
LK发布了新的文献求助10
1分钟前
Zcl完成签到 ,获得积分10
2分钟前
LK完成签到 ,获得积分10
2分钟前
Vincey完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ICEBLUE发布了新的文献求助10
2分钟前
orixero应助Wenyilong采纳,获得10
3分钟前
七七完成签到,获得积分10
3分钟前
3分钟前
七七发布了新的文献求助10
3分钟前
movoandy完成签到 ,获得积分10
3分钟前
鹿过完成签到,获得积分10
3分钟前
zqq完成签到,获得积分0
3分钟前
neao完成签到 ,获得积分10
3分钟前
Lucas应助Wenyilong采纳,获得10
3分钟前
3分钟前
4分钟前
Wenyilong发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
不安的毛巾关注了科研通微信公众号
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356787
求助须知:如何正确求助?哪些是违规求助? 4488523
关于积分的说明 13972223
捐赠科研通 4389497
什么是DOI,文献DOI怎么找? 2411606
邀请新用户注册赠送积分活动 1404132
关于科研通互助平台的介绍 1378165