Machine learning for the prediction of acute kidney injury in patients with sepsis

支持向量机 败血症 随机森林 决策树 人工智能 急性肾损伤 机器学习 人工神经网络 逻辑回归 梯度升压 接收机工作特性 沙发评分 计算机科学 医学 特征选择 重症监护医学 SAPS II型 重症监护室 阿帕奇II 内科学
作者
Suru Yue,Shasha Li,Xueying Huang,Jie Liu,Xuefei Hou,Yumei Zhao,Dongdong Niu,Jane Shen-Gunther,Wenkai Tan,Jiayuan Wu
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:20 (1) 被引量:81
标识
DOI:10.1186/s12967-022-03364-0
摘要

Abstract Background Acute kidney injury (AKI) is the most common and serious complication of sepsis, accompanied by high mortality and disease burden. The early prediction of AKI is critical for timely intervention and ultimately improves prognosis. This study aims to establish and validate predictive models based on novel machine learning (ML) algorithms for AKI in critically ill patients with sepsis. Methods Data of patients with sepsis were extracted from the Medical Information Mart for Intensive Care III (MIMIC- III) database. Feature selection was performed using a Boruta algorithm. ML algorithms such as logistic regression (LR), k -nearest neighbors (KNN), support vector machine (SVM), decision tree, random forest, Extreme Gradient Boosting (XGBoost), and artificial neural network (ANN) were applied for model construction by utilizing tenfold cross-validation. The performances of these models were assessed in terms of discrimination, calibration, and clinical application. Moreover, the discrimination of ML-based models was compared with those of Sequential Organ Failure Assessment (SOFA) and the customized Simplified Acute Physiology Score (SAPS) II model. Results A total of 3176 critically ill patients with sepsis were included for analysis, of which 2397 cases (75.5%) developed AKI during hospitalization. A total of 36 variables were selected for model construction. The models of LR, KNN, SVM, decision tree, random forest, ANN, XGBoost, SOFA and SAPS II score were established and obtained area under the receiver operating characteristic curves of 0.7365, 0.6637, 0.7353, 0.7492, 0.7787, 0.7547, 0.821, 0.6457 and 0.7015, respectively. The XGBoost model had the best predictive performance in terms of discrimination, calibration, and clinical application among all models. Conclusion The ML models can be reliable tools for predicting AKI in septic patients. The XGBoost model has the best predictive performance, which can be used to assist clinicians in identifying high-risk patients and implementing early interventions to reduce mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小叶子完成签到 ,获得积分10
刚刚
清风醉完成签到,获得积分10
2秒前
2秒前
迪亚波罗发布了新的文献求助10
3秒前
zhangxr发布了新的文献求助10
4秒前
尊敬的小土豆完成签到,获得积分10
6秒前
8秒前
123456完成签到,获得积分10
9秒前
善良梦竹完成签到 ,获得积分10
9秒前
子非鱼完成签到,获得积分10
10秒前
成就小懒猪完成签到,获得积分10
11秒前
我叫胖子完成签到,获得积分10
12秒前
辛勤的小熊猫完成签到 ,获得积分10
12秒前
CYAA完成签到,获得积分10
12秒前
12秒前
xiaohanzai88完成签到,获得积分10
13秒前
柏忆南完成签到 ,获得积分10
13秒前
充电宝应助迪亚波罗采纳,获得10
13秒前
yu发布了新的文献求助10
14秒前
大男完成签到,获得积分10
15秒前
欢呼妙菱完成签到,获得积分10
15秒前
不可思宇完成签到,获得积分10
15秒前
辛勤的谷云完成签到,获得积分20
15秒前
还是算了完成签到,获得积分10
16秒前
kisswind完成签到,获得积分20
17秒前
D&L发布了新的文献求助10
17秒前
xxxksk完成签到 ,获得积分10
18秒前
勤奋凡双完成签到 ,获得积分10
18秒前
xjz240221完成签到 ,获得积分10
18秒前
。。。。。。完成签到,获得积分10
19秒前
科研通AI2S应助二个虎牙采纳,获得10
20秒前
今后应助Tom采纳,获得10
21秒前
Chao完成签到,获得积分10
21秒前
小吴完成签到 ,获得积分10
23秒前
凯卮完成签到,获得积分10
24秒前
D&L完成签到,获得积分10
24秒前
小骁同学完成签到,获得积分10
24秒前
包包大人完成签到 ,获得积分10
25秒前
Qintt完成签到 ,获得积分10
26秒前
LJJ完成签到 ,获得积分10
26秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793788
关于积分的说明 7807511
捐赠科研通 2450069
什么是DOI,文献DOI怎么找? 1303637
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350