Improved sales time series predictions using deep neural networks with spatiotemporal dynamic pattern acquisition mechanism

计算机科学 组分(热力学) 时间序列 核(代数) 多元统计 人工神经网络 任务(项目管理) 数据挖掘 机器学习 人工智能 功能(生物学) 物理 组合数学 热力学 生物 经济 进化生物学 管理 数学
作者
Daifeng Li,Kaixin Lin,Xuting Li,Jianbin Liao,Ruo Du,Dingquan Chen,Andrew D. Madden
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (4): 102987-102987 被引量:10
标识
DOI:10.1016/j.ipm.2022.102987
摘要

The ability to predict product sales is invaluable for improving many of the routine decisions essential for the running of an enterprise. One significant challenge of sales prediction is that it is hard to dynamically capture changing dependent patterns along the sales time line, because sales are often influenced by complicated and changeable market environment. To address this issue, we model sales prediction as a task of multivariate time series (MTS) prediction, and propose a Spatiotemporal Dynamic Pattern Acquisition Mechanism (SDPA), which comprises four components, described below: (1) In the processing of input data: A Spatiotemporal Dynamic Kernel (SDK) component is designed for MTS to effectively capture different dependent correlation patterns during different time periods. (2) In terms of model design: A Simultaneous Regression (SR) component is proposed to dynamically detect stable correlations by using co-integration based dynamic programming over different time periods. (3) A novel Hierarchical Attention (HA) component is designed to incorporate SDK to detect spatiotemporal attention patterns from the captured dynamic correlations. (4) In the design of loss function, A Change Sensitive and Alignment component (DC) is proposed to provide more future information based on future trend correlations for better model training. The four components are incorporated into a unified framework by considering Homovariance Uncertainty (HU). This is referred to as SDPANet and contributes to model training and sales prediction. Extensive experiments were conducted on two real-world datasets: Galanz and Cainiao, and experimental results show that the proposed method achieves statistically significant improvements compared to the most state-of-the-art baselines, with average 41.5% reduction on RMAE, average 39.5% reduction on RRSE and average 46% improvement on CORR. Experiments are also conducted on two new datasets, which are Traffic and Exchange-Rate from other fields, to further verify the effectiveness of the proposed model. Case studies show that the model is capable of capturing dynamic changing patterns and of predicting future sales trends with greater accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漫画完成签到,获得积分10
1秒前
老王完成签到 ,获得积分10
2秒前
yuhaha完成签到,获得积分10
3秒前
3秒前
行走在科研的小路上完成签到,获得积分10
3秒前
高大小土豆完成签到 ,获得积分10
6秒前
游大达完成签到,获得积分10
10秒前
10秒前
沉默洋葱完成签到,获得积分10
10秒前
11秒前
精神的精神病完成签到,获得积分10
11秒前
sln完成签到,获得积分10
11秒前
song完成签到 ,获得积分10
13秒前
junhan发布了新的文献求助10
18秒前
yt完成签到 ,获得积分10
18秒前
万能图书馆应助chuxinrou采纳,获得10
20秒前
秋夏完成签到,获得积分10
20秒前
21秒前
淡然寒蕾完成签到,获得积分10
22秒前
淡定的月半完成签到,获得积分10
24秒前
默默的皮牙子完成签到,获得积分10
24秒前
26秒前
害羞猫咪完成签到,获得积分10
26秒前
diyisudu完成签到 ,获得积分10
27秒前
我爱科研完成签到 ,获得积分10
32秒前
bobochi完成签到 ,获得积分10
32秒前
33秒前
38秒前
冷静傲丝完成签到 ,获得积分10
41秒前
yoyo完成签到,获得积分10
41秒前
Gavin完成签到,获得积分10
41秒前
黑包包大人完成签到,获得积分10
44秒前
医生小白完成签到 ,获得积分10
44秒前
muttcy完成签到,获得积分10
45秒前
维维完成签到 ,获得积分10
46秒前
凌晨五点的完成签到,获得积分10
51秒前
宋芝恬完成签到,获得积分10
53秒前
36456657应助科研通管家采纳,获得10
55秒前
55秒前
浅浅殇完成签到,获得积分10
56秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261705
求助须知:如何正确求助?哪些是违规求助? 2902540
关于积分的说明 8319880
捐赠科研通 2572345
什么是DOI,文献DOI怎么找? 1397564
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632305