Improved sales time series predictions using deep neural networks with spatiotemporal dynamic pattern acquisition mechanism

计算机科学 组分(热力学) 时间序列 核(代数) 多元统计 人工神经网络 任务(项目管理) 数据挖掘 机器学习 人工智能 功能(生物学) 物理 组合数学 热力学 生物 经济 进化生物学 管理 数学
作者
Daifeng Li,Kaixin Lin,Xuting Li,Jianbin Liao,Ruo Du,Dingquan Chen,Andrew D. Madden
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (4): 102987-102987 被引量:10
标识
DOI:10.1016/j.ipm.2022.102987
摘要

The ability to predict product sales is invaluable for improving many of the routine decisions essential for the running of an enterprise. One significant challenge of sales prediction is that it is hard to dynamically capture changing dependent patterns along the sales time line, because sales are often influenced by complicated and changeable market environment. To address this issue, we model sales prediction as a task of multivariate time series (MTS) prediction, and propose a Spatiotemporal Dynamic Pattern Acquisition Mechanism (SDPA), which comprises four components, described below: (1) In the processing of input data: A Spatiotemporal Dynamic Kernel (SDK) component is designed for MTS to effectively capture different dependent correlation patterns during different time periods. (2) In terms of model design: A Simultaneous Regression (SR) component is proposed to dynamically detect stable correlations by using co-integration based dynamic programming over different time periods. (3) A novel Hierarchical Attention (HA) component is designed to incorporate SDK to detect spatiotemporal attention patterns from the captured dynamic correlations. (4) In the design of loss function, A Change Sensitive and Alignment component (DC) is proposed to provide more future information based on future trend correlations for better model training. The four components are incorporated into a unified framework by considering Homovariance Uncertainty (HU). This is referred to as SDPANet and contributes to model training and sales prediction. Extensive experiments were conducted on two real-world datasets: Galanz and Cainiao, and experimental results show that the proposed method achieves statistically significant improvements compared to the most state-of-the-art baselines, with average 41.5% reduction on RMAE, average 39.5% reduction on RRSE and average 46% improvement on CORR. Experiments are also conducted on two new datasets, which are Traffic and Exchange-Rate from other fields, to further verify the effectiveness of the proposed model. Case studies show that the model is capable of capturing dynamic changing patterns and of predicting future sales trends with greater accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助guilin采纳,获得20
刚刚
酷波er应助Cassie采纳,获得30
刚刚
RDH完成签到,获得积分10
刚刚
mengbo完成签到,获得积分20
刚刚
无情念双完成签到,获得积分10
刚刚
时玖关注了科研通微信公众号
1秒前
酷波er应助格子采纳,获得10
1秒前
哈哈完成签到,获得积分10
2秒前
刘显波完成签到,获得积分10
5秒前
kaka091完成签到,获得积分10
5秒前
6秒前
路宝发布了新的文献求助10
6秒前
禾+完成签到,获得积分10
6秒前
7秒前
申申完成签到,获得积分10
7秒前
8秒前
qian完成签到,获得积分20
8秒前
锦鲤完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
禾+发布了新的文献求助10
10秒前
小白完成签到,获得积分20
11秒前
刘JX完成签到,获得积分10
11秒前
geold发布了新的文献求助10
13秒前
传奇3应助Mm采纳,获得10
13秒前
bkagyin应助帕尼尼采纳,获得10
14秒前
研友_VZG7GZ应助圣斗士采纳,获得10
14秒前
D1fficulty完成签到,获得积分0
14秒前
欢欢完成签到,获得积分10
14秒前
14秒前
DDDD发布了新的文献求助10
14秒前
申申发布了新的文献求助10
15秒前
zzz完成签到,获得积分10
15秒前
Cassie发布了新的文献求助30
16秒前
16秒前
QY发布了新的文献求助20
16秒前
务实老虎完成签到,获得积分10
17秒前
Orange应助刘JX采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342