Improved sales time series predictions using deep neural networks with spatiotemporal dynamic pattern acquisition mechanism

计算机科学 组分(热力学) 时间序列 核(代数) 多元统计 人工神经网络 任务(项目管理) 数据挖掘 机器学习 人工智能 功能(生物学) 物理 组合数学 热力学 生物 经济 进化生物学 管理 数学
作者
Daifeng Li,Kaixin Lin,Xuting Li,Jianbin Liao,Ruo Du,Dingquan Chen,Andrew D. Madden
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (4): 102987-102987 被引量:10
标识
DOI:10.1016/j.ipm.2022.102987
摘要

The ability to predict product sales is invaluable for improving many of the routine decisions essential for the running of an enterprise. One significant challenge of sales prediction is that it is hard to dynamically capture changing dependent patterns along the sales time line, because sales are often influenced by complicated and changeable market environment. To address this issue, we model sales prediction as a task of multivariate time series (MTS) prediction, and propose a Spatiotemporal Dynamic Pattern Acquisition Mechanism (SDPA), which comprises four components, described below: (1) In the processing of input data: A Spatiotemporal Dynamic Kernel (SDK) component is designed for MTS to effectively capture different dependent correlation patterns during different time periods. (2) In terms of model design: A Simultaneous Regression (SR) component is proposed to dynamically detect stable correlations by using co-integration based dynamic programming over different time periods. (3) A novel Hierarchical Attention (HA) component is designed to incorporate SDK to detect spatiotemporal attention patterns from the captured dynamic correlations. (4) In the design of loss function, A Change Sensitive and Alignment component (DC) is proposed to provide more future information based on future trend correlations for better model training. The four components are incorporated into a unified framework by considering Homovariance Uncertainty (HU). This is referred to as SDPANet and contributes to model training and sales prediction. Extensive experiments were conducted on two real-world datasets: Galanz and Cainiao, and experimental results show that the proposed method achieves statistically significant improvements compared to the most state-of-the-art baselines, with average 41.5% reduction on RMAE, average 39.5% reduction on RRSE and average 46% improvement on CORR. Experiments are also conducted on two new datasets, which are Traffic and Exchange-Rate from other fields, to further verify the effectiveness of the proposed model. Case studies show that the model is capable of capturing dynamic changing patterns and of predicting future sales trends with greater accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柑橘小桃酥完成签到,获得积分10
刚刚
刚刚
Killor发布了新的文献求助10
刚刚
wp完成签到,获得积分10
刚刚
刚刚
缥缈冷亦完成签到,获得积分10
刚刚
小学猹完成签到,获得积分10
1秒前
1秒前
2秒前
4秒前
K先生发布了新的文献求助10
4秒前
mnm发布了新的文献求助10
5秒前
和谐的素发布了新的文献求助10
5秒前
NiL完成签到,获得积分10
6秒前
Zoe_Zhang发布了新的文献求助10
6秒前
科研通AI5应助wyb采纳,获得10
7秒前
7秒前
7秒前
祝雨晴完成签到 ,获得积分10
7秒前
翼德救我i应助迷你的念珍采纳,获得10
7秒前
1111完成签到,获得积分10
9秒前
杨秋月完成签到,获得积分10
9秒前
汉桑波欸完成签到,获得积分10
9秒前
共享精神应助抚琴祛魅采纳,获得30
9秒前
10秒前
单单来迟完成签到,获得积分10
10秒前
完美世界应助发发发采纳,获得10
10秒前
科研通AI6应助wp采纳,获得10
10秒前
huakun发布了新的文献求助10
12秒前
耕云钓月完成签到,获得积分10
12秒前
12秒前
你的发布了新的文献求助10
13秒前
CR7应助grace135采纳,获得20
14秒前
14秒前
科研通AI5应助刻苦的雨莲采纳,获得30
14秒前
和谐的素完成签到,获得积分10
15秒前
15秒前
16秒前
iNk应助洛尘采纳,获得20
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920907
求助须知:如何正确求助?哪些是违规求助? 4192271
关于积分的说明 13021164
捐赠科研通 3963456
什么是DOI,文献DOI怎么找? 2172475
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099310