清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improved sales time series predictions using deep neural networks with spatiotemporal dynamic pattern acquisition mechanism

计算机科学 组分(热力学) 时间序列 核(代数) 多元统计 人工神经网络 任务(项目管理) 数据挖掘 机器学习 人工智能 功能(生物学) 物理 组合数学 热力学 生物 经济 进化生物学 管理 数学
作者
Daifeng Li,Kaixin Lin,Xuting Li,Jianbin Liao,Ruo Du,Dingquan Chen,Andrew D. Madden
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (4): 102987-102987 被引量:10
标识
DOI:10.1016/j.ipm.2022.102987
摘要

The ability to predict product sales is invaluable for improving many of the routine decisions essential for the running of an enterprise. One significant challenge of sales prediction is that it is hard to dynamically capture changing dependent patterns along the sales time line, because sales are often influenced by complicated and changeable market environment. To address this issue, we model sales prediction as a task of multivariate time series (MTS) prediction, and propose a Spatiotemporal Dynamic Pattern Acquisition Mechanism (SDPA), which comprises four components, described below: (1) In the processing of input data: A Spatiotemporal Dynamic Kernel (SDK) component is designed for MTS to effectively capture different dependent correlation patterns during different time periods. (2) In terms of model design: A Simultaneous Regression (SR) component is proposed to dynamically detect stable correlations by using co-integration based dynamic programming over different time periods. (3) A novel Hierarchical Attention (HA) component is designed to incorporate SDK to detect spatiotemporal attention patterns from the captured dynamic correlations. (4) In the design of loss function, A Change Sensitive and Alignment component (DC) is proposed to provide more future information based on future trend correlations for better model training. The four components are incorporated into a unified framework by considering Homovariance Uncertainty (HU). This is referred to as SDPANet and contributes to model training and sales prediction. Extensive experiments were conducted on two real-world datasets: Galanz and Cainiao, and experimental results show that the proposed method achieves statistically significant improvements compared to the most state-of-the-art baselines, with average 41.5% reduction on RMAE, average 39.5% reduction on RRSE and average 46% improvement on CORR. Experiments are also conducted on two new datasets, which are Traffic and Exchange-Rate from other fields, to further verify the effectiveness of the proposed model. Case studies show that the model is capable of capturing dynamic changing patterns and of predicting future sales trends with greater accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
lod完成签到,获得积分10
5秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
8秒前
紫熊发布了新的文献求助10
19秒前
Liufgui应助水天一色采纳,获得10
25秒前
fang完成签到,获得积分10
31秒前
35秒前
50秒前
xiaozou55完成签到 ,获得积分10
51秒前
紫熊发布了新的文献求助20
1分钟前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
drhwang完成签到,获得积分10
1分钟前
1分钟前
小强完成签到 ,获得积分10
1分钟前
kangshuai完成签到,获得积分10
1分钟前
水天一色发布了新的文献求助10
1分钟前
1分钟前
Liufgui应助乏味采纳,获得10
1分钟前
2分钟前
bellapp完成签到 ,获得积分10
2分钟前
2分钟前
Liufgui应助Fern采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
DSUNNY完成签到 ,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
忘忧Aquarius完成签到,获得积分10
3分钟前
貔貅完成签到 ,获得积分10
3分钟前
南苏发布了新的文献求助10
3分钟前
3分钟前
WenJun完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015340
求助须知:如何正确求助?哪些是违规求助? 3555298
关于积分的说明 11317940
捐赠科研通 3288605
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983