电解质
石墨
锂(药物)
容量损失
电池(电)
溶剂
电极
材料科学
化学工程
离子
锂离子电池
极性(国际关系)
化学
物理化学
有机化学
复合材料
热力学
功率(物理)
内分泌学
工程类
细胞
物理
医学
生物化学
作者
Chunsheng Wang,Bo Nan,Long Chen,Nuwanthi D. Rodrigo,Oleg Borodin,Nan Piao,Jiale Xia,Travis P. Pollard,Singyuk Hou,Jiaxun Zhang,Xiao Ji,Fuqiang Huang,Xiyue Zhang,Lin Ma,Xinzi He,Sufu Liu,Hongli Wan,Enyuan Hu,Weiran Zhang,Kang Xu,Xiao‐Qing Yang,Brett L. Lucht
标识
DOI:10.1002/anie.202205967
摘要
Abstract LiNi x Co y Mn z O 2 ( x +y+ z =1)||graphite lithium‐ion battery (LIB) chemistry promises practical applications. However, its low‐temperature (≤ −20 °C) performance is poor because the increased resistance encountered by Li + transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance ( R ct ) which dominates low‐temperature LIBs performance. Herein, we propose a strategy of using low‐polarity‐solvent electrolytes which have weak interactions between the solvents and the Li + to reduce R ct , achieving facile Li + transport at sub‐zero temperatures. The exemplary electrolyte enables LiNi 0.8 Mn 0.1 Co 0.1 O 2 ||graphite cells to deliver a capacity of ≈113 mAh g −1 (98 % full‐cell capacity) at 25 °C and to remain 82 % of their room‐temperature capacity at −20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at −30 °C and 78 % of their capacity at −40 °C and show stable cycling at 50 °C.
科研通智能强力驱动
Strongly Powered by AbleSci AI