Reinforcement learning for cost-effective IoT service caching at the edge

计算机科学 服务器 隐藏物 延迟(音频) 计算机网络 服务(商务) 边缘计算 服务提供商 强化学习 GSM演进的增强数据速率 分布式计算 人工智能 电信 经济 经济
作者
Binbin Huang,Xiao Liu,Yuanyuan Xiang,Dongjin Yu,Shuiguang Deng,Shangguang Wang
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:168: 120-136 被引量:10
标识
DOI:10.1016/j.jpdc.2022.06.008
摘要

In the edge computing environment, Internet of Things (IoT) application service providers can rent resources from edge servers to cache their service items such as datasets and code libraries, and thus significantly reducing the service request latency and the core network traffic. Since IoT service providers need to pay for the rented edge computing resources, it is essential to find a dynamical service caching strategy to minimize the service cost while optimizing the performance objective such as service latency reduction. However, most of the existing studies either overlooked the problem of collaborative service caching or failed to consider the system's long-term service cost and latency. In this paper, to address such a problem, we coordinate multiple edge servers to cache service items and formulate the collaborative service caching problem using a multi-agent multi-armed bandit model. Furthermore, we propose a utility-aware collaborative service caching (UACSC) scheme based on a multi-agent reinforcement learning. The UACSC scheme can coordinate multiple edge servers to make a dynamic joint caching decision, aiming at maximizing the system's long-term utility. To evaluate the performance of our proposed scheme, we implement four representative baseline algorithms and compare them with six different performance metrics. In addition, a real-world case study is also presented to demonstrate the effectiveness of the UACSC scheme. Comprehensive experimental results show that the UACSC scheme can effectively coordinate multiple edge servers to cache service items, and achieve higher service latency reduction and lower service cost compared with other baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助高婉婷采纳,获得10
1秒前
yalan完成签到,获得积分10
2秒前
义气莫茗完成签到 ,获得积分10
2秒前
小鱼发布了新的文献求助10
4秒前
DCH完成签到 ,获得积分10
5秒前
庆次发布了新的文献求助10
6秒前
7秒前
思源应助nana2023采纳,获得10
8秒前
wangaiting完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
结实缘郡发布了新的文献求助30
10秒前
文艺的懿应助糯米饭采纳,获得10
10秒前
10秒前
liu发布了新的文献求助10
11秒前
木头发布了新的文献求助10
11秒前
浮游应助Roy采纳,获得10
11秒前
顺心的飞飞完成签到,获得积分10
12秒前
12秒前
13秒前
聪明的bala完成签到,获得积分10
14秒前
自觉远山发布了新的文献求助10
15秒前
思源应助小鱼采纳,获得10
16秒前
NexusExplorer应助浩洁采纳,获得10
17秒前
17秒前
Ava应助DARKNESS采纳,获得10
17秒前
bluebell完成签到,获得积分10
18秒前
贝利亚完成签到,获得积分10
19秒前
科研通AI6应助liu采纳,获得30
20秒前
科研通AI6应助liu采纳,获得10
20秒前
胡萝卜完成签到 ,获得积分10
21秒前
22秒前
22秒前
22秒前
22秒前
emma完成签到,获得积分10
22秒前
老迟到的冰海完成签到,获得积分10
23秒前
ash发布了新的文献求助30
23秒前
CodeCraft应助believe采纳,获得10
25秒前
传奇3应助iiianchen采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434422
求助须知:如何正确求助?哪些是违规求助? 4546707
关于积分的说明 14203943
捐赠科研通 4466693
什么是DOI,文献DOI怎么找? 2448283
邀请新用户注册赠送积分活动 1439099
关于科研通互助平台的介绍 1415969