Reinforcement learning for cost-effective IoT service caching at the edge

计算机科学 服务器 隐藏物 延迟(音频) 计算机网络 服务(商务) 边缘计算 服务提供商 强化学习 GSM演进的增强数据速率 分布式计算 人工智能 电信 经济 经济
作者
Binbin Huang,Xiao Liu,Yuanyuan Xiang,Dongjin Yu,Shuiguang Deng,Shangguang Wang
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:168: 120-136 被引量:10
标识
DOI:10.1016/j.jpdc.2022.06.008
摘要

In the edge computing environment, Internet of Things (IoT) application service providers can rent resources from edge servers to cache their service items such as datasets and code libraries, and thus significantly reducing the service request latency and the core network traffic. Since IoT service providers need to pay for the rented edge computing resources, it is essential to find a dynamical service caching strategy to minimize the service cost while optimizing the performance objective such as service latency reduction. However, most of the existing studies either overlooked the problem of collaborative service caching or failed to consider the system's long-term service cost and latency. In this paper, to address such a problem, we coordinate multiple edge servers to cache service items and formulate the collaborative service caching problem using a multi-agent multi-armed bandit model. Furthermore, we propose a utility-aware collaborative service caching (UACSC) scheme based on a multi-agent reinforcement learning. The UACSC scheme can coordinate multiple edge servers to make a dynamic joint caching decision, aiming at maximizing the system's long-term utility. To evaluate the performance of our proposed scheme, we implement four representative baseline algorithms and compare them with six different performance metrics. In addition, a real-world case study is also presented to demonstrate the effectiveness of the UACSC scheme. Comprehensive experimental results show that the UACSC scheme can effectively coordinate multiple edge servers to cache service items, and achieve higher service latency reduction and lower service cost compared with other baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王大力完成签到,获得积分10
刚刚
刚刚
文闵发布了新的文献求助30
刚刚
不觉发布了新的文献求助10
刚刚
wqa1472完成签到,获得积分10
1秒前
结实的蘑菇完成签到 ,获得积分10
1秒前
lyx2010完成签到,获得积分10
1秒前
ZBY0216完成签到,获得积分10
1秒前
吴晨曦完成签到,获得积分10
2秒前
3秒前
研友_LwbYv8发布了新的文献求助10
3秒前
accelia完成签到,获得积分10
4秒前
卷卷完成签到,获得积分10
4秒前
4秒前
4秒前
周小浪完成签到,获得积分10
5秒前
王Hope完成签到,获得积分10
5秒前
5秒前
李爱国应助义气的白凝采纳,获得10
5秒前
5秒前
樊孟完成签到,获得积分10
6秒前
6秒前
科研通AI6应助子咸采纳,获得10
7秒前
流萤之光完成签到,获得积分20
7秒前
拼搏宛儿发布了新的文献求助30
7秒前
7秒前
8秒前
吴晨曦发布了新的文献求助10
8秒前
马俊完成签到,获得积分10
8秒前
Grace159完成签到 ,获得积分10
9秒前
潇洒天抒完成签到,获得积分10
9秒前
中森菜龙发布了新的文献求助10
9秒前
9秒前
nhsyb嘉发布了新的文献求助10
9秒前
瓦瓦应助Joseph采纳,获得50
9秒前
9秒前
9秒前
9秒前
9秒前
MchemG应助写论文采纳,获得30
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885