Reinforcement learning for cost-effective IoT service caching at the edge

计算机科学 服务器 隐藏物 延迟(音频) 计算机网络 服务(商务) 边缘计算 服务提供商 强化学习 GSM演进的增强数据速率 分布式计算 人工智能 电信 经济 经济
作者
Binbin Huang,Xiao Liu,Yuanyuan Xiang,Daren Yu,Shuiguang Deng,Shangguang Wang
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:168: 120-136 被引量:5
标识
DOI:10.1016/j.jpdc.2022.06.008
摘要

In the edge computing environment, Internet of Things (IoT) application service providers can rent resources from edge servers to cache their service items such as datasets and code libraries, and thus significantly reducing the service request latency and the core network traffic. Since IoT service providers need to pay for the rented edge computing resources, it is essential to find a dynamical service caching strategy to minimize the service cost while optimizing the performance objective such as service latency reduction. However, most of the existing studies either overlooked the problem of collaborative service caching or failed to consider the system's long-term service cost and latency. In this paper, to address such a problem, we coordinate multiple edge servers to cache service items and formulate the collaborative service caching problem using a multi-agent multi-armed bandit model. Furthermore, we propose a utility-aware collaborative service caching (UACSC) scheme based on a multi-agent reinforcement learning. The UACSC scheme can coordinate multiple edge servers to make a dynamic joint caching decision, aiming at maximizing the system's long-term utility. To evaluate the performance of our proposed scheme, we implement four representative baseline algorithms and compare them with six different performance metrics. In addition, a real-world case study is also presented to demonstrate the effectiveness of the UACSC scheme. Comprehensive experimental results show that the UACSC scheme can effectively coordinate multiple edge servers to cache service items, and achieve higher service latency reduction and lower service cost compared with other baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
binbinbin发布了新的文献求助10
刚刚
隐形曼青应助hansongluo采纳,获得10
1秒前
2秒前
2秒前
3秒前
木木发布了新的文献求助10
4秒前
SciGPT应助虞子采纳,获得10
5秒前
6秒前
111完成签到,获得积分10
7秒前
不敢自称科研人完成签到,获得积分10
7秒前
7秒前
8秒前
打打应助Cindy165采纳,获得10
8秒前
西西发布了新的文献求助10
9秒前
淡然冬灵发布了新的文献求助10
10秒前
wtdd完成签到,获得积分20
10秒前
子车茗应助撸撸大仙采纳,获得30
10秒前
yx完成签到,获得积分10
11秒前
丘比特应助DAY采纳,获得10
12秒前
12秒前
悦耳的怀绿完成签到,获得积分10
13秒前
13秒前
sqb完成签到,获得积分10
13秒前
刘静完成签到,获得积分10
14秒前
小菜白完成签到 ,获得积分10
14秒前
杳鸢应助老迟到的乐安采纳,获得10
16秒前
小树完成签到,获得积分20
17秒前
18秒前
Orange应助尊敬艳采纳,获得30
19秒前
19秒前
领导范儿应助科研通管家采纳,获得10
20秒前
SweepingMonk应助科研通管家采纳,获得10
20秒前
36456657应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
so000应助科研通管家采纳,获得10
20秒前
亮点发布了新的文献求助10
20秒前
不晚应助科研通管家采纳,获得10
20秒前
在水一方应助科研通管家采纳,获得10
20秒前
so000应助科研通管家采纳,获得10
20秒前
华仔应助一方通行采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461924
求助须知:如何正确求助?哪些是违规求助? 3055592
关于积分的说明 9048604
捐赠科研通 2745261
什么是DOI,文献DOI怎么找? 1506125
科研通“疑难数据库(出版商)”最低求助积分说明 696000
邀请新用户注册赠送积分活动 695539