Reinforcement learning for cost-effective IoT service caching at the edge

计算机科学 服务器 隐藏物 延迟(音频) 计算机网络 服务(商务) 边缘计算 服务提供商 强化学习 GSM演进的增强数据速率 分布式计算 人工智能 电信 经济 经济
作者
Binbin Huang,Xiao Liu,Yuanyuan Xiang,Dongjin Yu,Shuiguang Deng,Shangguang Wang
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:168: 120-136 被引量:10
标识
DOI:10.1016/j.jpdc.2022.06.008
摘要

In the edge computing environment, Internet of Things (IoT) application service providers can rent resources from edge servers to cache their service items such as datasets and code libraries, and thus significantly reducing the service request latency and the core network traffic. Since IoT service providers need to pay for the rented edge computing resources, it is essential to find a dynamical service caching strategy to minimize the service cost while optimizing the performance objective such as service latency reduction. However, most of the existing studies either overlooked the problem of collaborative service caching or failed to consider the system's long-term service cost and latency. In this paper, to address such a problem, we coordinate multiple edge servers to cache service items and formulate the collaborative service caching problem using a multi-agent multi-armed bandit model. Furthermore, we propose a utility-aware collaborative service caching (UACSC) scheme based on a multi-agent reinforcement learning. The UACSC scheme can coordinate multiple edge servers to make a dynamic joint caching decision, aiming at maximizing the system's long-term utility. To evaluate the performance of our proposed scheme, we implement four representative baseline algorithms and compare them with six different performance metrics. In addition, a real-world case study is also presented to demonstrate the effectiveness of the UACSC scheme. Comprehensive experimental results show that the UACSC scheme can effectively coordinate multiple edge servers to cache service items, and achieve higher service latency reduction and lower service cost compared with other baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
victorzou完成签到,获得积分10
刚刚
刚刚
moyv25发布了新的文献求助10
刚刚
成就的白竹完成签到,获得积分10
1秒前
饼饼大王完成签到,获得积分10
1秒前
1秒前
努力生活的小柴完成签到,获得积分10
2秒前
2秒前
ljj722完成签到,获得积分10
2秒前
SCI1区完成签到,获得积分10
2秒前
2秒前
英俊水池完成签到,获得积分10
3秒前
Hello应助借我一份心动采纳,获得10
4秒前
苏世誉完成签到,获得积分10
4秒前
SciGPT应助小懒jiajia采纳,获得10
4秒前
科研通AI6应助李WB采纳,获得10
4秒前
枯叶蝶完成签到 ,获得积分10
4秒前
小马甲应助怡然白竹采纳,获得10
5秒前
5秒前
楼旭尧发布了新的文献求助10
5秒前
5秒前
syh5527029完成签到,获得积分10
5秒前
5秒前
6秒前
张张洼完成签到,获得积分10
6秒前
倩倩0857完成签到,获得积分10
6秒前
6秒前
在水一方应助7890733采纳,获得10
7秒前
笨笨静竹发布了新的文献求助10
7秒前
7秒前
8秒前
bing完成签到,获得积分10
8秒前
内向的跳跳糖完成签到,获得积分10
9秒前
科研通AI6应助11采纳,获得10
9秒前
9秒前
研友_LmVygn发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
地瓜儿完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402308
求助须知:如何正确求助?哪些是违规求助? 4520855
关于积分的说明 14082461
捐赠科研通 4434876
什么是DOI,文献DOI怎么找? 2434481
邀请新用户注册赠送积分活动 1426661
关于科研通互助平台的介绍 1405415