Reinforcement learning for cost-effective IoT service caching at the edge

计算机科学 服务器 隐藏物 延迟(音频) 计算机网络 服务(商务) 边缘计算 服务提供商 强化学习 GSM演进的增强数据速率 分布式计算 人工智能 电信 经济 经济
作者
Binbin Huang,Xiao Liu,Yuanyuan Xiang,Dongjin Yu,Shuiguang Deng,Shangguang Wang
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier BV]
卷期号:168: 120-136 被引量:10
标识
DOI:10.1016/j.jpdc.2022.06.008
摘要

In the edge computing environment, Internet of Things (IoT) application service providers can rent resources from edge servers to cache their service items such as datasets and code libraries, and thus significantly reducing the service request latency and the core network traffic. Since IoT service providers need to pay for the rented edge computing resources, it is essential to find a dynamical service caching strategy to minimize the service cost while optimizing the performance objective such as service latency reduction. However, most of the existing studies either overlooked the problem of collaborative service caching or failed to consider the system's long-term service cost and latency. In this paper, to address such a problem, we coordinate multiple edge servers to cache service items and formulate the collaborative service caching problem using a multi-agent multi-armed bandit model. Furthermore, we propose a utility-aware collaborative service caching (UACSC) scheme based on a multi-agent reinforcement learning. The UACSC scheme can coordinate multiple edge servers to make a dynamic joint caching decision, aiming at maximizing the system's long-term utility. To evaluate the performance of our proposed scheme, we implement four representative baseline algorithms and compare them with six different performance metrics. In addition, a real-world case study is also presented to demonstrate the effectiveness of the UACSC scheme. Comprehensive experimental results show that the UACSC scheme can effectively coordinate multiple edge servers to cache service items, and achieve higher service latency reduction and lower service cost compared with other baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星星轨迹发布了新的文献求助10
3秒前
4秒前
钦林发布了新的文献求助10
7秒前
7秒前
8秒前
heheheli发布了新的文献求助10
8秒前
9秒前
在水一方应助车灵波采纳,获得10
9秒前
10秒前
FashionBoy应助xiaoxiaoz采纳,获得10
11秒前
舒适访风发布了新的文献求助10
11秒前
hmgdktf发布了新的文献求助10
12秒前
大木头发布了新的文献求助10
12秒前
13秒前
wj完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
16秒前
赵凌完成签到,获得积分10
18秒前
Shahid完成签到,获得积分20
18秒前
张 大头发布了新的文献求助10
19秒前
哩哩发布了新的文献求助10
19秒前
九木德完成签到 ,获得积分10
19秒前
脑洞疼应助XUAN采纳,获得10
19秒前
Mercury发布了新的文献求助10
21秒前
赵凌发布了新的文献求助10
21秒前
22秒前
孙意冉完成签到,获得积分10
24秒前
PATTOM发布了新的文献求助10
27秒前
27秒前
xixifu发布了新的文献求助10
27秒前
27秒前
Akim应助哩哩采纳,获得10
29秒前
30秒前
30秒前
干净南风发布了新的文献求助10
30秒前
31秒前
优美的跳跳糖完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624923
求助须知:如何正确求助?哪些是违规求助? 4024171
关于积分的说明 12456546
捐赠科研通 3708857
什么是DOI,文献DOI怎么找? 2045726
邀请新用户注册赠送积分活动 1077723
科研通“疑难数据库(出版商)”最低求助积分说明 960238