Prediction of impending central-line-associated bloodstream infections in hospitalized cardiac patients: development and testing of a machine-learning model

医学 血流感染 中心线 曲线下面积 重症监护室 血培养 心内膜炎 冠状动脉监护室 血流 中心静脉导管 内科学 急诊医学 导管 重症监护医学 外科 抗生素 心肌梗塞 微生物学 生物
作者
K. Bonello,Sitaram M. Emani,A Sörensen,Linda K. Shaw,Manasee Godsay,M. Delgado,Francesca Sperotto,Mauricio Santillana,John N. Kheir
出处
期刊:Journal of Hospital Infection [Elsevier]
卷期号:127: 44-50 被引量:8
标识
DOI:10.1016/j.jhin.2022.06.003
摘要

While modelling of central-line-associated blood stream infection (CLABSI) risk factors is common, models that predict an impending CLABSI in real time are lacking.To build a prediction model which identifies patients who will develop a CLABSI in the ensuing 24 h.We collected variables potentially related to infection identification in all patients admitted to the cardiac intensive care unit or cardiac ward at Boston Children's Hospital in whom a central venous catheter (CVC) was in place between January 2010 and August 2020, excluding those with a diagnosis of bacterial endocarditis. We created models predicting whether a patient would develop CLABSI in the ensuing 24 h. We assessed model performance based on area under the curve (AUC), sensitivity and false-positive rate (FPR) of models run on an independent testing set (40%).A total of 104,035 patient-days and 139,662 line-days corresponding to 7468 unique patients were included in the analysis. There were 399 positive blood cultures (0.38%), most commonly with Staphylococcus aureus (23% of infections). Major predictors included a prior history of infection, elevated maximum heart rate, elevated maximum temperature, elevated C-reactive protein, exposure to parenteral nutrition and use of alteplase for CVC clearance. The model identified 25% of positive cultures with an FPR of 0.11% (AUC = 0.82).A machine-learning model can be used to predict 25% of patients with impending CLABSI with only 1.1/1000 of these predictions being incorrect. Once prospectively validated, this tool may allow for early treatment or prevention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxd发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
ZCZD完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Danqing发布了新的文献求助10
3秒前
3秒前
liuzhanyu发布了新的文献求助10
4秒前
hha完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
悦耳指甲油完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI2S应助大胆诗云采纳,获得10
7秒前
Owen应助诺克萨斯采纳,获得10
8秒前
8秒前
Hello应助冷艳的纸鹤采纳,获得10
8秒前
8秒前
我是老大应助Arsenel采纳,获得10
8秒前
hi_traffic完成签到,获得积分10
9秒前
大可发布了新的文献求助10
9秒前
10秒前
wzc发布了新的文献求助10
10秒前
酷波er应助zxd采纳,获得10
10秒前
11秒前
future发布了新的文献求助10
11秒前
杭秋寒发布了新的文献求助10
11秒前
12秒前
eznesug完成签到,获得积分10
12秒前
香蕉觅云应助陈品琪采纳,获得10
13秒前
13秒前
13秒前
zzuzll完成签到,获得积分10
14秒前
LaTeXer应助1111111采纳,获得30
14秒前
飘逸焱完成签到 ,获得积分10
14秒前
棋士应助1111111采纳,获得10
14秒前
CodeCraft应助1111111采纳,获得10
15秒前
星辰大海应助无语的大门采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718285
求助须知:如何正确求助?哪些是违规求助? 5251746
关于积分的说明 15285174
捐赠科研通 4868514
什么是DOI,文献DOI怎么找? 2614220
邀请新用户注册赠送积分活动 1564054
关于科研通互助平台的介绍 1521548