County-Level Irrigation Water Demand Estimation Using Machine Learning: Case Study of California

灌溉 克里金 农业工程 估计 亏缺灌溉 农业 环境科学 回归分析 变量(数学) 过程(计算) 灌溉管理 用水 回归 农场用水 计算机科学 水资源管理 统计 节约用水 数学 机器学习 工程类 地理 生态学 数学分析 系统工程 考古 生物 操作系统
作者
Mohammad Emami,Arman Ahmadi,André Daccache,Sara Nazif,Sayed‐Farhad Mousavi,Hojat Karami
出处
期刊:Water [Multidisciplinary Digital Publishing Institute]
卷期号:14 (12): 1937-1937 被引量:6
标识
DOI:10.3390/w14121937
摘要

Irrigated agriculture is the largest consumer of freshwater globally. Despite the clarity of influential factors and deriving forces, estimation of the volumetric irrigation demand using biophysical models is prohibitively difficult. Data-driven models have proven their ability to predict geophysical and hydrological phenomena with only a handful of influential input variables; however, the lack of reliable input data in most agricultural regions of the world hinders the effectiveness of these approaches. Attempting to estimate the irrigation water demand, we first analyze the correlation of potential influencing variables with irrigation water. We develop machine learning models to predict California’s annual, county-level irrigation water demand based on the statistical analysis findings over an 18-year time span. Input variables are different combinations of deriving meteorological forces, geographical characteristics, cropped area, and crop category. After testing various regression machine learning approaches, the result shows that Gaussian process regression produces the best results. Our findings suggest that irrigated cropped area, air temperature, and vapor pressure deficit are the most significant variables in predicting irrigation water demand. This research also shows that Gaussian process regression can predict irrigation water demand with high accuracy (R2 higher than 0.97 and RMSE as low as 0.06 km3) with different input variable combinations. An accurate estimation of irrigation water use of various crop categories and areas can assist decision-making processes and improve water management strategies. The proposed model can help water policy makers evaluate climatological and agricultural scenarios and hence be used as a decision support tool for agricultural water management at a regional scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
陈一口完成签到 ,获得积分10
3秒前
3秒前
3秒前
hehehe完成签到,获得积分10
3秒前
Orange应助整齐雁芙采纳,获得30
4秒前
4秒前
五公里小战士完成签到,获得积分10
6秒前
阔达岂愈发布了新的文献求助30
6秒前
wu8577应助DBTX采纳,获得10
7秒前
8秒前
现代的访曼应助bxyyy采纳,获得20
9秒前
豌豆发布了新的文献求助10
9秒前
daodaodaodao完成签到,获得积分10
11秒前
儒雅的若剑完成签到,获得积分10
11秒前
陈艳林发布了新的文献求助10
11秒前
15秒前
sunnyfish007完成签到,获得积分10
15秒前
16秒前
充电宝应助虎啊虎啊采纳,获得10
16秒前
16秒前
犹豫的夏旋完成签到 ,获得积分10
17秒前
weilucking应助dudu采纳,获得10
18秒前
aoba完成签到 ,获得积分10
18秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
信仰发布了新的文献求助10
21秒前
22秒前
852应助还单身的香之采纳,获得10
22秒前
Orange应助月眠眠采纳,获得10
24秒前
愉快西牛完成签到 ,获得积分10
25秒前
25秒前
MMM完成签到 ,获得积分10
26秒前
月儿呗发布了新的文献求助10
26秒前
27秒前
28秒前
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547