County-Level Irrigation Water Demand Estimation Using Machine Learning: Case Study of California

灌溉 克里金 农业工程 估计 亏缺灌溉 农业 环境科学 回归分析 变量(数学) 过程(计算) 灌溉管理 用水 回归 农场用水 计算机科学 水资源管理 统计 节约用水 数学 机器学习 工程类 地理 生态学 数学分析 系统工程 考古 生物 操作系统
作者
Mohammad Emami,Arman Ahmadi,André Daccache,Sara Nazif,Sayed‐Farhad Mousavi,Hojat Karami
出处
期刊:Water [MDPI AG]
卷期号:14 (12): 1937-1937 被引量:6
标识
DOI:10.3390/w14121937
摘要

Irrigated agriculture is the largest consumer of freshwater globally. Despite the clarity of influential factors and deriving forces, estimation of the volumetric irrigation demand using biophysical models is prohibitively difficult. Data-driven models have proven their ability to predict geophysical and hydrological phenomena with only a handful of influential input variables; however, the lack of reliable input data in most agricultural regions of the world hinders the effectiveness of these approaches. Attempting to estimate the irrigation water demand, we first analyze the correlation of potential influencing variables with irrigation water. We develop machine learning models to predict California’s annual, county-level irrigation water demand based on the statistical analysis findings over an 18-year time span. Input variables are different combinations of deriving meteorological forces, geographical characteristics, cropped area, and crop category. After testing various regression machine learning approaches, the result shows that Gaussian process regression produces the best results. Our findings suggest that irrigated cropped area, air temperature, and vapor pressure deficit are the most significant variables in predicting irrigation water demand. This research also shows that Gaussian process regression can predict irrigation water demand with high accuracy (R2 higher than 0.97 and RMSE as low as 0.06 km3) with different input variable combinations. An accurate estimation of irrigation water use of various crop categories and areas can assist decision-making processes and improve water management strategies. The proposed model can help water policy makers evaluate climatological and agricultural scenarios and hence be used as a decision support tool for agricultural water management at a regional scale.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助zz采纳,获得10
刚刚
1秒前
Akim应助yy采纳,获得10
2秒前
haiqin28发布了新的文献求助10
2秒前
2秒前
2秒前
huan发布了新的文献求助10
2秒前
安琦发布了新的文献求助10
3秒前
ding应助Jenny采纳,获得10
3秒前
4秒前
Yang完成签到,获得积分10
4秒前
4秒前
飘落的樱花完成签到,获得积分10
4秒前
liliwang发布了新的文献求助20
4秒前
5秒前
小二郎应助LXdjlx采纳,获得10
5秒前
yys发布了新的文献求助10
6秒前
一颗橙子CCC完成签到,获得积分10
6秒前
慕青应助宋依依采纳,获得10
6秒前
6秒前
7秒前
8秒前
小马甲应助六尺巷采纳,获得10
8秒前
8秒前
10秒前
10秒前
6w6发布了新的文献求助10
11秒前
大个应助朴实的南露采纳,获得10
11秒前
悦耳冰蓝发布了新的文献求助10
11秒前
ocean发布了新的文献求助20
12秒前
12秒前
和谐煎饼完成签到,获得积分20
13秒前
13秒前
14秒前
14秒前
桐桐应助MT采纳,获得10
15秒前
酷波er应助MT采纳,获得10
15秒前
充电宝应助MT采纳,获得10
15秒前
ding应助MT采纳,获得10
15秒前
LXdjlx发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559