Machine-learning-based prediction of vortex-induced vibration in long-span bridges using limited information

稳健性(进化) 计算机科学 振动 可用性(结构) 机器学习 灵活性(工程) 数据挖掘 复制 可解释性 聚类分析 人工智能 工程类 结构工程 数学 物理 统计 化学 基因 量子力学 生物化学
作者
Sun-Joong Kim,Taeyong Kim
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:266: 114551-114551 被引量:24
标识
DOI:10.1016/j.engstruct.2022.114551
摘要

Long-span bridges are susceptible to wind-induced vibration due to their high flexibility, low-frequency dominance, and light damping capacity. Vortex-induced vibrations (VIVs), which usually occur under in-service conditions, can result in discomfort to users and detrimental effects on the fatigue capacity of structural elements; therefore, accurate VIV assessments are essential in ensuring the vibrational serviceability of bridges. Despite the research efforts of data-driven VIV prediction, the robustness and general applicability of the proposed methods remains challenging, in that each method requires different conditions for the datasets in order to develop machine-learning (ML) models. Furthermore, collecting sufficient VIV datasets (anomaly state) from various operational conditions is impractical, time-consuming, and even impossible in some situations compared with non-VIV datasets (normal state). This imbalance in the dataset could degrade the model performance. To address this issue, this paper focuses on developing a general framework for introducing ML algorithms to predict VIVs with a limited amount of information. To properly replicate the practical cases, two different scenarios are assumed along with the amount of VIV data: (1) no VIV data are available, or (2) only a small number of VIV data can be obtained. A variety of ML-assisted methods are introduced for each scenario to predict VIVs in order to demonstrate the versatility of the proposed framework. The effectiveness and applicability of the proposed framework are demonstrated using actual monitoring data. Different methods are prepared to provide further insight into the ML algorithms used for VIV prediction. The proposed framework in this paper is expected to advance our knowledge and understanding of the application of ML algorithms to bridge systems, which are essential in enhancing resilience against wind hazards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷炫贞发布了新的文献求助10
刚刚
33发布了新的文献求助10
刚刚
1秒前
1秒前
ljie完成签到,获得积分10
1秒前
1秒前
小叶子完成签到,获得积分10
2秒前
Zo完成签到,获得积分10
2秒前
VDC驳回了nozero应助
2秒前
胡茶茶发布了新的文献求助10
2秒前
Akim应助轻松的可乐采纳,获得10
3秒前
JINWEIJIANG发布了新的文献求助10
3秒前
yao发布了新的文献求助10
3秒前
xyx发布了新的文献求助10
3秒前
Ava应助西西采纳,获得10
3秒前
3秒前
3秒前
4秒前
5秒前
ava425发布了新的文献求助10
5秒前
shine发布了新的文献求助10
6秒前
我叫马友才呀完成签到,获得积分10
6秒前
阳光明媚发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
JamesPei应助陌路孤星采纳,获得10
7秒前
cxqygdn完成签到,获得积分10
7秒前
xzx发布了新的文献求助10
7秒前
科研通AI5应助Galaxy采纳,获得10
8秒前
CipherSage应助小步子采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
酷波er应助默默冷松采纳,获得10
8秒前
尹冰之完成签到,获得积分10
9秒前
大模型应助自由灵雁采纳,获得10
9秒前
siiiiixx发布了新的文献求助100
9秒前
9秒前
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652664
求助须知:如何正确求助?哪些是违规求助? 3216813
关于积分的说明 9713913
捐赠科研通 2924534
什么是DOI,文献DOI怎么找? 1601734
邀请新用户注册赠送积分活动 754514
科研通“疑难数据库(出版商)”最低求助积分说明 733099