Define and characterize the anhedonia in major depressive disorder: An explorative study

无血性 重性抑郁障碍 心理学 临床心理学 萧条(经济学) 精神科 心情 精神分裂症(面向对象编程) 宏观经济学 经济
作者
Jingyu Lin,Yun‐Ai Su,Sakina J. Rizvi,Jackie Jagoda,Jitao Li,Yankun Wu,Youran Dai,Yu Zhang,Sidney H. Kennedy,Tianmei Si
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:313: 235-242 被引量:7
标识
DOI:10.1016/j.jad.2022.06.082
摘要

Although anhedonia is a key symptom of major depressive disorder (MDD), there is neither a concise nor effective method to distinguish and define anhedonia in MDD. The current study attempts to answer two questions based on validating the Dimensional Anhedonia Rating Scale (DARS) in Chinese MDD patients: 1) whether anhedonia subgroup can be identified? 2) whether patients with anhedonia display unique psychosocial and clinical features?In the discovery sample, 533 MDD patients and 124 healthy controls were recruited into a multicenter study. For replication, a further 112 first-episode, drug-naïve MDD patients were recruited. Latent profile analysis (LPA) was used to identify the latent subgroups based on their hedonic function measured by the DARS. According to the categorization, ROC curves were applied to find the cut-off value. Lasso regression was performed to characterize psychological and clinical features linked to anhedonia.The data-driven approach identified and validated the anhedonia subgroup, and proposed that the cut-off value for distinguishing anhedonia was 28.5 based on the total score of DARS. Lasso regression demonstrated that melancholia, lower levels of positive affect and education, more severe depressive symptoms, older age were associated with anhedonia in MDD patients.This study used a data-driven approach to propose a new and convenient method for distinguishing the anhedonia of MDD patients with unique psychological and clinical features. Identifying the subtype may contribute to pinpointing more specific biomarkers in shedding light on the mechanisms of anhedonia in MDD.TNDTAD study, NCT03294525; TOSD study, NCT03148522.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
每念至此完成签到,获得积分10
刚刚
大力黑米完成签到 ,获得积分10
1秒前
123发布了新的文献求助30
1秒前
搜集达人应助gaos采纳,获得10
1秒前
hengy发布了新的文献求助10
1秒前
杳鸢应助Xenia采纳,获得10
2秒前
kekekelili完成签到,获得积分10
3秒前
3秒前
zhonghbush发布了新的文献求助10
4秒前
reck发布了新的文献求助10
4秒前
4秒前
4秒前
kimcandy完成签到,获得积分10
4秒前
华仔应助任品贤采纳,获得10
5秒前
无花果应助急雪回风采纳,获得10
5秒前
8秒前
曾经的灵完成签到,获得积分20
8秒前
bkagyin应助小宇采纳,获得10
8秒前
许之北完成签到 ,获得积分10
8秒前
8秒前
船舵发布了新的文献求助10
8秒前
gaos完成签到,获得积分10
9秒前
念念发布了新的文献求助10
9秒前
An_mie完成签到,获得积分10
9秒前
9秒前
9秒前
Arabella完成签到,获得积分10
10秒前
HEIKU应助追梦人采纳,获得10
10秒前
10秒前
小T儿发布了新的文献求助10
10秒前
852应助woxiangbiye采纳,获得10
10秒前
飞羽完成签到,获得积分10
11秒前
Owen应助cherry采纳,获得10
11秒前
坚定的老六完成签到,获得积分10
11秒前
协和_子鱼完成签到,获得积分0
11秒前
12秒前
Hyde完成签到,获得积分10
13秒前
小南孩完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672