Fine-grained classification of automobile front face modeling based on Gestalt psychology*

人工智能 计算机科学 格式塔心理学 面子(社会学概念) 模式识别(心理学) 卷积神经网络 计算机视觉 社会科学 神经科学 社会学 感知 生物
作者
Huining Pei,Renzhe Guo,Zhaoyun Tan,Xueqin Huang,Zhonghang Bai
出处
期刊:The Visual Computer [Springer Nature]
卷期号:39 (7): 2981-2998 被引量:2
标识
DOI:10.1007/s00371-022-02506-1
摘要

In this paper, we propose a fine-grained classification method for automobile front face modeling images based on Gestalt psychology. This method divides pixels into features of visual regions through convolutional neural network, divides automobile front face images into parts, and conducts fine-grained classification based on the overall modeling of parts. A more objective method of fine granularity classification of automobile front face image is explored. A fine-grained classification and recognition model of automobile front face modeling based on Gestalt psychology is proposed in this work. Firstly, unclassified input car front face images are filtered through part detection, part segmentation, and regularization processing by combining the image classification training sets of car front face shapes. Secondly, to facilitate weakly supervised learning for each part, we establish recognition models using the simple a priori of U-shaped distribution for individual parts of car images and train the net using image-level object labels on the ResNet-101 network framework. Attention mechanism is then reused for aggregate features to output classification vectors. Finally, recognition accuracy of 89.9% is reached on the Comprehensive Cars (CompCars) dataset. Compared with other CNN methods, the results confirm that U-shaped distribution combined with parts in the exploration image has a higher recognition rate. Moreover, model interpretability can be achieved by dividing images and recognizing the contribution of each part in the classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷一手发布了新的文献求助10
1秒前
1秒前
guojingjing发布了新的文献求助10
2秒前
爆米花应助杨欣悦采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
聪明怜阳发布了新的文献求助10
2秒前
GYPP发布了新的文献求助10
3秒前
Ruoru完成签到,获得积分10
4秒前
英姑应助魔幻的向松采纳,获得20
4秒前
5秒前
5秒前
科研通AI5应助王小小采纳,获得10
5秒前
fkldfokfkrg发布了新的文献求助10
5秒前
asdfqwer应助Ricky采纳,获得10
6秒前
赘婿应助可靠蹇采纳,获得10
6秒前
lucy完成签到,获得积分10
6秒前
温暖涫发布了新的文献求助10
7秒前
文天发布了新的文献求助10
7秒前
Ruoru发布了新的文献求助10
7秒前
无情莆完成签到 ,获得积分10
8秒前
幸福大白发布了新的文献求助30
8秒前
英俊的铭应助丁璐采纳,获得10
8秒前
8秒前
隐形曼青应助小鲤鱼采纳,获得10
8秒前
8秒前
猪猪爱吃西红柿完成签到,获得积分10
8秒前
Chen完成签到,获得积分20
9秒前
尤静柏完成签到,获得积分10
10秒前
小璐sunny发布了新的文献求助10
10秒前
10秒前
一米阳光发布了新的文献求助10
10秒前
酷波er应助啊哈哈哈采纳,获得10
10秒前
11秒前
仔拉发布了新的文献求助10
11秒前
勤奋尔冬完成签到 ,获得积分10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126