OOD-GNN: Out-of-Distribution Generalized Graph Neural Network

计算机科学 虚假关系 图形 判别式 人工智能 算法 理论计算机科学 模式识别(心理学) 机器学习
作者
Haoyang Li,Xin Wang,Ziwei Zhang,Wenwu Zhu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 7328-7340 被引量:93
标识
DOI:10.1109/tkde.2022.3193725
摘要

Graph neural networks (GNNs) have achieved impressive performance when testing and training graph data come from identical distribution. However, existing GNNs lack out-of-distribution generalization abilities so that their performance substantially degrades when there exist distribution shifts between testing and training graph data. To solve this problem, in this work, we propose an out-of-distribution generalized graph neural network (OOD-GNN) for achieving satisfactory performance on unseen testing graphs that have different distributions with training graphs. Our proposed OOD-GNN employs a novel nonlinear graph representation decorrelation method utilizing random Fourier features, which encourages the model to eliminate the statistical dependence between relevant and irrelevant graph representations through iteratively optimizing the sample graph weights and graph encoder. We further present a global weight estimator to learn weights for training graphs such that variables in graph representations are forced to be independent. The learned weights help the graph encoder to get rid of spurious correlations and, in turn, concentrate more on the true connection between learned discriminative graph representations and their ground-truth labels. We conduct extensive experiments to validate the out-of-distribution generalization abilities on two synthetic and 12 real-world datasets with distribution shifts. The results demonstrate that our proposed OOD-GNN significantly outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耿昊发布了新的文献求助10
1秒前
生动安波应助白嫖论文采纳,获得10
1秒前
王佳亮完成签到,获得积分10
1秒前
充电宝应助MCY采纳,获得10
1秒前
beiyoumilu完成签到,获得积分10
3秒前
汉堡包应助QQ采纳,获得10
3秒前
3秒前
yuC驳回了wanci应助
5秒前
5秒前
5秒前
杨胖胖完成签到,获得积分10
6秒前
脑洞疼应助英俊的白安采纳,获得10
7秒前
雨相所至发布了新的文献求助20
8秒前
科研通AI6应助耿昊采纳,获得10
8秒前
古重迷离完成签到 ,获得积分10
8秒前
8秒前
呵呵呵完成签到,获得积分10
9秒前
愉快的犀牛完成签到 ,获得积分10
10秒前
growl发布了新的文献求助10
10秒前
11秒前
11秒前
愉快若烟发布了新的文献求助10
11秒前
整齐的泥猴桃完成签到 ,获得积分10
12秒前
12秒前
14秒前
科研通AI6应助SY采纳,获得10
14秒前
秀丽笑容完成签到,获得积分10
14秒前
15秒前
zz发布了新的文献求助10
15秒前
Hello应助鼻揩了转去采纳,获得10
16秒前
16秒前
斯文败类应助cassie采纳,获得10
16秒前
棕色垂耳兔完成签到 ,获得积分10
16秒前
17秒前
QQ发布了新的文献求助10
18秒前
Lucas应助健康的绮晴采纳,获得10
19秒前
19秒前
欢喜的依风完成签到,获得积分10
19秒前
丘比特应助YY采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995