作者
Mahmoud Madkour,Fatma Salman,I. El-Wardany,Sayed A. Abdel-Fattah,Mahmoud Alagawany,Nesrein M. Hashem,Sameh A. Abdelnour,Mohamed S. El-Kholy,Kuldeep Dhama
摘要
The poultry industry faces several obstacles and challenges, including the changes in global temperature, increase in the per capita demand for meat and eggs, and the emergence and spread of various diseases. Among these, environmental challenges are one of the most severe hurdles impacting the growth and productivity of poultry. In particular, the increasing frequency and severity of heat waves over the past few years represent a major challenge, and this is expected to worsen in the coming decades. Chickens are highly susceptible to high ambient temperatures (thermal stress), which negatively affect their growth and productivity, leading to enormous economic losses. In the light of global warming, these losses are expected to increase in the near future. Specifically, the worsening of climate change and the rise in global temperatures have augmented the adverse effects of heat on poultry production worldwide. At present, the world population is approximately 7.9 billion, and it has been predicted to reach 9.3 billion by 2050 and approximately 11 billion by 2100, implying a great demand for protein supply; therefore, strategies to mitigate future poultry challenges must be urgently devised. To date, several mitigation measures have been adopted to minimize the negative effects of heat stress in poultry. Of these, thermal acclimation at the postnatal stage or throughout the embryonic stages has been explored as a promising approach; however, for large-scale application, this approach warrants further investigation to determine the suitable temperature and poultry age. Moreover, molecular mechanisms governing thermal conditioning are poorly understood. To this end, we sought to expand our knowledge of thermal conditioning in poultry, which may serve as a valuable reference to improve the thermotolerance of chickens via nutritional management and vitagene regulation. Vitagenes regulate the responses of poultry to diverse stresses. In recent years, nutritionists have paid close attention to bioactive compounds such as resveratrol, curcumin, and quercetin administered alone or in combination. These compounds activate vitagenes and other regulators of the antioxidant defense system, such as nuclear factor-erythroid 2-related factor 2. Overall, thermal conditioning may be an effective strategy to mitigate the negative effects of heat stress. In this context, the present review synthesizes information on the adverse impacts of thermal stress, elucidating the molecular mechanisms underlying thermal conditioning and its effects on the acquisition of tolerance to acute heat stress in later life. Finally, the role of some polyphenolic compounds, such as resveratrol, curcumin, and quercetin, in attenuating heat stress through the activation of the antioxidant defense system in poultry are discussed.