执行机构
软机器人
气动人工肌肉
气动执行机构
人工肌肉
机械工程
仿生学
弯曲
工程类
刚度
波纹管
材料科学
计算机科学
结构工程
人工智能
作者
Shumi Zhao,Yisong Lei,Ziwen Wang,Jie Zhang,Jianxun Liu,Pengfei Zheng,Zidan Gong,Yu Sun
出处
期刊:Micromachines
[MDPI AG]
日期:2021-12-20
卷期号:12 (12): 1593-1593
被引量:5
摘要
To precisely achieve a series of daily finger bending motions, a soft robotic finger corresponding to the anatomical range of each joint was designed in this study with multi-material pneumatic actuators. The actuator as a biomimetic artificial joint was developed on the basis of two composite materials of different shear modules, and the pneumatic bellows as expansion parts was restricted by frame that made from polydimethylsiloxane (PDMS). A simplified mathematical model was used for the bending mechanism description and provides guidance for the multi-material pneumatic actuator fabrication (e.g., stiffness and thickness) and structural design (e.g., cross length and chamber radius), as well as the control parameter optimization (e.g., the air pressure supply). An actuation pressure of over 70 kPa is required by the developed soft robotic finger to provide a full motion range (MCP = 36°, PIP = 114°, and DIP = 75°) for finger action mimicking. In conclusion, a multi-material pneumatic actuator was designed and developed for soft robotic finger application and theoretically and experimentally demonstrated its feasibility in finger action mimicking. This study explored the mechanical properties of the actuator and could provide evidence-based technical parameters for pneumatic robotic finger design and precise control of its dynamic air pressure dosages in mimicking actions. Thereby, the conclusion was supported by the results theoretically and experimentally, which also aligns with our aim to design and develop a multi-material pneumatic actuator as a biomimetic artificial joint for soft robotic finger application.
科研通智能强力驱动
Strongly Powered by AbleSci AI