The use and applicability of machine learning algorithms in predicting the surgical outcome for patients with benign prostatic enlargement. Which model to use?

随机森林 机器学习 均方误差 算法 人工智能 计算机科学 多层感知器 决策树 皮尔逊积矩相关系数 人工神经网络 数学 统计
作者
Panagiotis Mourmouris,Lazaros Tzelves,Georgios Feretzakis,Dimitris Kalles,Ioannis Manolitsis,Marinos Berdempes,Ioannis Varkarakis,Andreas Skolarikos
出处
期刊:Archivio italiano di urologia, andrologia [PAGEPress (Italy)]
卷期号:93 (4): 418-424 被引量:1
标识
DOI:10.4081/aiua.2021.4.418
摘要

Artificial intelligence (AI) is increasingly used in medicine, but data on benign prostatic enlargement (BPE) management are lacking. This study aims to test the performance of several machine learning algorithms, in predicting clinical outcomes during BPE surgical management.Clinical data were extracted from a prospectively collected database for 153 men with BPE, treated with transurethral resection (monopolar or bipolar) or vaporization of the prostate. Due to small sample size, we applied a method for increasing our dataset, Synthetic Minority Oversampling Technique (SMOTE). The new dataset created with SMOTE has been expanded by 453 synthetic instances, in addition to the original 153. The WEKA Data Mining Software was used for constructing predictive models, while several appropriate statistical measures, like Correlation coefficient (R), Mean Absolute Error (MAE), Root Mean-Squared Error (RMSE), were calculated with several supervised regression algorithms - techniques (Linear Regression, Multilayer Perceptron, SMOreg, k-Nearest Neighbors, Bagging, M5Rules, M5P - Pruned Model Tree, and Random forest).The baseline characteristics of patients were extracted, with age, prostate volume, method of operation, baseline Qmax and baseline IPSS being used as independent variables. Using the Random Forest algorithm resulted in values of R, MAE, RMSE that indicate the ability of these models to better predict % Qmax increase. The Random Forest model also demonstrated the best results in R, MAE, RMSE for predicting % IPSS reduction.Machine Learning techniques can be used for making predictions regarding clinical outcomes of surgical BPRE management. Wider-scale validation studies are necessary to strengthen our results in choosing the best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SHAO完成签到,获得积分0
刚刚
木槿花难开完成签到,获得积分10
1秒前
曹博关注了科研通微信公众号
1秒前
1秒前
key发布了新的文献求助10
2秒前
梦想在飞发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助30
3秒前
大胆嘞完成签到 ,获得积分10
3秒前
3秒前
科目三应助高lucky采纳,获得10
3秒前
啦啦啦完成签到,获得积分10
4秒前
4秒前
xnzll完成签到,获得积分10
5秒前
奥利奥爱好者完成签到,获得积分10
5秒前
hdy关注了科研通微信公众号
6秒前
寒冷的咖啡应助可爱板栗采纳,获得20
6秒前
7秒前
光亮笑柳发布了新的文献求助10
7秒前
黑黑黑发布了新的文献求助10
7秒前
han完成签到,获得积分20
7秒前
CodeCraft应助LL采纳,获得10
8秒前
8秒前
照照完成签到,获得积分20
9秒前
歪歪完成签到,获得积分10
10秒前
11秒前
12秒前
想发SCI发布了新的文献求助10
12秒前
12秒前
FashionBoy应助梦想在飞采纳,获得20
12秒前
13秒前
张业轩完成签到,获得积分10
13秒前
梨江鱼完成签到,获得积分10
14秒前
梦XING发布了新的文献求助10
15秒前
Vincenzo发布了新的文献求助10
15秒前
AAA卡车司机完成签到,获得积分10
15秒前
臭学医的完成签到,获得积分20
15秒前
慢慢不吃梨子完成签到,获得积分10
16秒前
16秒前
16秒前
搞怪白秋完成签到 ,获得积分10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974797
求助须知:如何正确求助?哪些是违规求助? 3519250
关于积分的说明 11197623
捐赠科研通 3255405
什么是DOI,文献DOI怎么找? 1797769
邀请新用户注册赠送积分活动 877156
科研通“疑难数据库(出版商)”最低求助积分说明 806202