The use and applicability of machine learning algorithms in predicting the surgical outcome for patients with benign prostatic enlargement. Which model to use?

随机森林 机器学习 均方误差 算法 人工智能 计算机科学 多层感知器 决策树 皮尔逊积矩相关系数 人工神经网络 数学 统计
作者
Panagiotis Mourmouris,Lazaros Tzelves,Georgios Feretzakis,Dimitris Kalles,Ioannis Manolitsis,Marinos Berdempes,Ioannis Varkarakis,Andreas Skolarikos
出处
期刊:Archivio italiano di urologia, andrologia [PAGEPress (Italy)]
卷期号:93 (4): 418-424 被引量:1
标识
DOI:10.4081/aiua.2021.4.418
摘要

Artificial intelligence (AI) is increasingly used in medicine, but data on benign prostatic enlargement (BPE) management are lacking. This study aims to test the performance of several machine learning algorithms, in predicting clinical outcomes during BPE surgical management.Clinical data were extracted from a prospectively collected database for 153 men with BPE, treated with transurethral resection (monopolar or bipolar) or vaporization of the prostate. Due to small sample size, we applied a method for increasing our dataset, Synthetic Minority Oversampling Technique (SMOTE). The new dataset created with SMOTE has been expanded by 453 synthetic instances, in addition to the original 153. The WEKA Data Mining Software was used for constructing predictive models, while several appropriate statistical measures, like Correlation coefficient (R), Mean Absolute Error (MAE), Root Mean-Squared Error (RMSE), were calculated with several supervised regression algorithms - techniques (Linear Regression, Multilayer Perceptron, SMOreg, k-Nearest Neighbors, Bagging, M5Rules, M5P - Pruned Model Tree, and Random forest).The baseline characteristics of patients were extracted, with age, prostate volume, method of operation, baseline Qmax and baseline IPSS being used as independent variables. Using the Random Forest algorithm resulted in values of R, MAE, RMSE that indicate the ability of these models to better predict % Qmax increase. The Random Forest model also demonstrated the best results in R, MAE, RMSE for predicting % IPSS reduction.Machine Learning techniques can be used for making predictions regarding clinical outcomes of surgical BPRE management. Wider-scale validation studies are necessary to strengthen our results in choosing the best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中岛悠斗完成签到,获得积分10
刚刚
香蕉发布了新的文献求助10
刚刚
雪原白鹿完成签到 ,获得积分10
刚刚
自信的网络完成签到 ,获得积分10
刚刚
Jin完成签到,获得积分10
刚刚
strangeliu完成签到,获得积分10
刚刚
落后紫夏完成签到,获得积分10
1秒前
1秒前
00K发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
2秒前
3秒前
栗子发布了新的文献求助10
3秒前
3秒前
懦弱的咖啡豆完成签到,获得积分10
3秒前
3秒前
ZMY发布了新的文献求助10
4秒前
TTT0530完成签到,获得积分10
4秒前
复杂语山完成签到,获得积分10
4秒前
香蕉觅云应助chcmuer采纳,获得10
4秒前
666关闭了666文献求助
4秒前
5秒前
5秒前
jignjing完成签到,获得积分10
5秒前
changping发布了新的文献求助10
6秒前
ZY完成签到 ,获得积分10
7秒前
xiaoyangchun完成签到,获得积分10
7秒前
7秒前
知行者完成签到 ,获得积分10
7秒前
chen发布了新的文献求助10
7秒前
sober发布了新的文献求助10
8秒前
乐乐应助失眠的耳机采纳,获得10
9秒前
Jadedew完成签到,获得积分10
10秒前
10秒前
10秒前
12591完成签到,获得积分20
11秒前
烟花应助迅速谷云采纳,获得10
11秒前
11秒前
木又权完成签到,获得积分10
11秒前
LiuHanli完成签到,获得积分10
11秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969033
求助须知:如何正确求助?哪些是违规求助? 3513900
关于积分的说明 11170818
捐赠科研通 3249256
什么是DOI,文献DOI怎么找? 1794708
邀请新用户注册赠送积分活动 875326
科研通“疑难数据库(出版商)”最低求助积分说明 804759