The use and applicability of machine learning algorithms in predicting the surgical outcome for patients with benign prostatic enlargement. Which model to use?

随机森林 机器学习 均方误差 算法 人工智能 计算机科学 多层感知器 决策树 皮尔逊积矩相关系数 人工神经网络 数学 统计
作者
Panagiotis Mourmouris,Lazaros Tzelves,Georgios Feretzakis,Dimitris Kalles,Ioannis Manolitsis,Marinos Berdempes,Ioannis Varkarakis,Andreas Skolarikos
出处
期刊:Archivio italiano di urologia, andrologia [PAGEPress Publications]
卷期号:93 (4): 418-424 被引量:1
标识
DOI:10.4081/aiua.2021.4.418
摘要

Artificial intelligence (AI) is increasingly used in medicine, but data on benign prostatic enlargement (BPE) management are lacking. This study aims to test the performance of several machine learning algorithms, in predicting clinical outcomes during BPE surgical management.Clinical data were extracted from a prospectively collected database for 153 men with BPE, treated with transurethral resection (monopolar or bipolar) or vaporization of the prostate. Due to small sample size, we applied a method for increasing our dataset, Synthetic Minority Oversampling Technique (SMOTE). The new dataset created with SMOTE has been expanded by 453 synthetic instances, in addition to the original 153. The WEKA Data Mining Software was used for constructing predictive models, while several appropriate statistical measures, like Correlation coefficient (R), Mean Absolute Error (MAE), Root Mean-Squared Error (RMSE), were calculated with several supervised regression algorithms - techniques (Linear Regression, Multilayer Perceptron, SMOreg, k-Nearest Neighbors, Bagging, M5Rules, M5P - Pruned Model Tree, and Random forest).The baseline characteristics of patients were extracted, with age, prostate volume, method of operation, baseline Qmax and baseline IPSS being used as independent variables. Using the Random Forest algorithm resulted in values of R, MAE, RMSE that indicate the ability of these models to better predict % Qmax increase. The Random Forest model also demonstrated the best results in R, MAE, RMSE for predicting % IPSS reduction.Machine Learning techniques can be used for making predictions regarding clinical outcomes of surgical BPRE management. Wider-scale validation studies are necessary to strengthen our results in choosing the best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助kingripple采纳,获得10
1秒前
2秒前
cxl666完成签到,获得积分10
3秒前
3秒前
喝到几点发布了新的文献求助10
4秒前
5秒前
5秒前
李爱国应助搞怪的火龙果采纳,获得10
6秒前
6秒前
科研小白完成签到 ,获得积分10
6秒前
8秒前
coco发布了新的文献求助20
9秒前
北极光完成签到,获得积分20
9秒前
大聪明发布了新的文献求助10
10秒前
红油曲奇发布了新的文献求助10
10秒前
北极光发布了新的文献求助10
12秒前
平淡南霜完成签到,获得积分10
12秒前
淡淡的忆彤完成签到 ,获得积分10
13秒前
midrain完成签到,获得积分10
13秒前
romme完成签到,获得积分10
13秒前
小杜完成签到,获得积分20
14秒前
16秒前
xiaoshi完成签到,获得积分10
18秒前
北川六月完成签到,获得积分10
21秒前
打打应助互助遵法尚德采纳,获得10
22秒前
加菲丰丰应助midrain采纳,获得10
23秒前
25秒前
积极慕梅应助我爱科研采纳,获得10
27秒前
佳丽完成签到,获得积分10
27秒前
27秒前
28秒前
晨晨发布了新的文献求助30
28秒前
28秒前
29秒前
小蘑菇应助天降紫微星采纳,获得10
29秒前
30秒前
上官若男应助喝到几点采纳,获得10
30秒前
麦可发布了新的文献求助30
31秒前
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792465
关于积分的说明 7802933
捐赠科研通 2448664
什么是DOI,文献DOI怎么找? 1302761
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237