The use and applicability of machine learning algorithms in predicting the surgical outcome for patients with benign prostatic enlargement. Which model to use?

随机森林 机器学习 均方误差 算法 人工智能 计算机科学 多层感知器 决策树 皮尔逊积矩相关系数 人工神经网络 数学 统计
作者
Panagiotis Mourmouris,Lazaros Tzelves,Georgios Feretzakis,Dimitris Kalles,Ioannis Manolitsis,Marinos Berdempes,Ioannis Varkarakis,Andreas Skolarikos
出处
期刊:Archivio italiano di urologia, andrologia [PAGEPress Publications]
卷期号:93 (4): 418-424 被引量:1
标识
DOI:10.4081/aiua.2021.4.418
摘要

Artificial intelligence (AI) is increasingly used in medicine, but data on benign prostatic enlargement (BPE) management are lacking. This study aims to test the performance of several machine learning algorithms, in predicting clinical outcomes during BPE surgical management.Clinical data were extracted from a prospectively collected database for 153 men with BPE, treated with transurethral resection (monopolar or bipolar) or vaporization of the prostate. Due to small sample size, we applied a method for increasing our dataset, Synthetic Minority Oversampling Technique (SMOTE). The new dataset created with SMOTE has been expanded by 453 synthetic instances, in addition to the original 153. The WEKA Data Mining Software was used for constructing predictive models, while several appropriate statistical measures, like Correlation coefficient (R), Mean Absolute Error (MAE), Root Mean-Squared Error (RMSE), were calculated with several supervised regression algorithms - techniques (Linear Regression, Multilayer Perceptron, SMOreg, k-Nearest Neighbors, Bagging, M5Rules, M5P - Pruned Model Tree, and Random forest).The baseline characteristics of patients were extracted, with age, prostate volume, method of operation, baseline Qmax and baseline IPSS being used as independent variables. Using the Random Forest algorithm resulted in values of R, MAE, RMSE that indicate the ability of these models to better predict % Qmax increase. The Random Forest model also demonstrated the best results in R, MAE, RMSE for predicting % IPSS reduction.Machine Learning techniques can be used for making predictions regarding clinical outcomes of surgical BPRE management. Wider-scale validation studies are necessary to strengthen our results in choosing the best model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆思柔完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
脑洞疼应助Xu采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
Dddd发布了新的文献求助10
2秒前
xx完成签到,获得积分20
2秒前
BEIBEI完成签到,获得积分10
2秒前
liyi发布了新的文献求助10
2秒前
苗条的山晴完成签到,获得积分10
2秒前
3秒前
mm完成签到,获得积分10
4秒前
JUll发布了新的文献求助10
4秒前
无奈抽屉完成签到 ,获得积分10
4秒前
4秒前
5秒前
风中的夏兰完成签到,获得积分10
5秒前
czt完成签到,获得积分10
5秒前
研友_nPPERn发布了新的文献求助10
5秒前
6秒前
温柔若发布了新的文献求助10
6秒前
ry发布了新的文献求助10
6秒前
gms发布了新的文献求助10
6秒前
Owen应助judy采纳,获得30
6秒前
Zifflie完成签到,获得积分10
6秒前
7秒前
7秒前
xuanxuan发布了新的文献求助10
7秒前
keigo发布了新的文献求助10
7秒前
xqwwqx发布了新的文献求助10
7秒前
fay完成签到,获得积分10
8秒前
毛儿豆儿完成签到,获得积分10
8秒前
马铃薯发布了新的文献求助10
8秒前
帅玉玉发布了新的文献求助10
8秒前
MADKAI发布了新的文献求助10
8秒前
老詹头完成签到,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678