Deep Learning Assisted Diagnosis of Musculoskeletal Tumors Based on Contrast‐Enhanced Magnetic Resonance Imaging

医学 医学诊断 恶性肿瘤 磁共振成像 放射科 冠状面 核医学 病理
作者
Keyang Zhao,Mingzi Zhang,Zhaozhi Xie,Yan Xu,Shenghui Wu,Peng Liao,Hongtao Lu,Wei Feng Shen,Chi-Cheng Fu,Haoyang Cui,Fang Qu,Jiong Mei
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:56 (1): 99-107 被引量:13
标识
DOI:10.1002/jmri.28025
摘要

Misdiagnosis of malignant musculoskeletal tumors may lead to the delay of intervention, resulting in amputation or death.To improve the diagnostic efficacy of musculoskeletal tumors by developing deep learning (DL) models based on contrast-enhanced magnetic resonance imaging and to quantify the improvement in diagnostic performance obtained by using these models.Retrospective.Three hundreds and four musculoskeletal tumors, including 212 malignant and 92 benign lesions, were randomized into the training (n = 180), validation (n = 62) and testing cohort (n = 62).A 3 T/T1 -weighted (T1 -w), T2 -weighted (T2 -w), diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted (CET1 -w) images.Three DL models based, respectively, on the sagittal, coronal, and axial MR images were constructed to predict the malignancy of tumors. Blinded to the prediction results, a group of specialists made independent initial diagnoses for each patient by reading all image sequences. One month after the initial diagnoses, the same group of doctors made another round of diagnoses knowing the malignancy of each tumor predicted by the three models. The reference standard was the pathological diagnosis of malignancy.Sensitivity, specificity, and accuracy (all with 95% confidential intervals [CI]) corresponding to each diagnostic test were computed. Chi-square tests were used to assess the differences in those parameters with and without DL models. A P value < 0.05 was considered statistically significant.The developed models significantly improved the diagnostic sensitivities of two oncologists by 0.15 (95% CI: 0.06-0.24) and 0.36 (95% CI: 0.24-0.28), one radiologist by 0.12 (95% CI: 0.04-0.20), and three of the four orthopedists, respectively, by 0.12 (95% CI: 0.04-0.20), 0.29 (95% CI: 0.18-0.40), and 0.23 (95% CI: 0.13-0.33), without impairing any of their diagnostic specificities (all P > 0.128).The DL models developed can significantly improve the performance of doctors with different training and experience in diagnosing musculoskeletal tumors.3 TECHNICAL EFFICACY: Stage 2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GuanguanYaa发布了新的文献求助10
刚刚
hsy309完成签到,获得积分10
刚刚
NN发布了新的文献求助30
1秒前
嘲鸫完成签到,获得积分10
1秒前
刘胖胖发布了新的文献求助30
1秒前
1秒前
李晓彤发布了新的文献求助10
2秒前
2秒前
洁净的元蝶完成签到,获得积分10
2秒前
安静的映萱完成签到,获得积分10
2秒前
香蕉冰真发布了新的文献求助10
2秒前
pray完成签到,获得积分20
3秒前
照亮世界的ay完成签到,获得积分10
3秒前
城南以南发布了新的文献求助10
4秒前
13击发布了新的文献求助10
4秒前
4秒前
buno应助zyz1132采纳,获得10
4秒前
4秒前
共享精神应助MX001采纳,获得10
4秒前
5秒前
5秒前
怕孤单的嚣完成签到,获得积分10
5秒前
先生完成签到,获得积分10
5秒前
5秒前
zsy发布了新的文献求助10
5秒前
5秒前
苏silence发布了新的文献求助10
6秒前
我爱学习发布了新的文献求助10
6秒前
6秒前
MouLi应助again采纳,获得10
6秒前
int0完成签到,获得积分10
6秒前
6秒前
6秒前
天天快乐应助塵埃采纳,获得10
7秒前
汉堡包应助如常采纳,获得10
7秒前
7秒前
小马甲应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017