Recognition and counting of typical apple pests based on deep learning

人工智能 提取器 卷积神经网络 模式识别(心理学) 计算机科学 深度学习 灵敏度(控制系统) 特征(语言学) 工艺工程 电子工程 语言学 工程类 哲学
作者
Tiewei Wang,Longgang Zhao,Baohua Li,Juan Li,Xinwei Li,Wenkai Xu
出处
期刊:Ecological Informatics [Elsevier]
卷期号:68: 101556-101556 被引量:14
标识
DOI:10.1016/j.ecoinf.2022.101556
摘要

The recognition and counting of apple pests sampled by different sex attractants are very important and significant for pest control. Convolutional neural networks (CNNs) are common artificial intelligence algorithms widely used in image recognition and counting. However, because the sizes of different species of pests are different and the densities of pests on the sticky board are sometimes considerable, it is difficult to recognise and count them accurately and efficiently. This study proposes an improved recognition and counting approach based on deep learning with data reorganisation, termed ‘MPest-RCNN’. The contributions herein are twofold: (1) A new structure of Faster R-CNN is proposed by using ResNet101 feature extractor which has higher precision of recognition. (2) We propose a new convolutional network structure with small anchors to extract features such that the recognition accuracy is improved for small pests. We took three typical pests in apple orchards to establish an original data set using sex attractants. The proposed MPest-RCNN model solves the recognition problem of multiple types and sizes of pests by using different sex attractants. Finally, experiments are conducted, and a comparative analysis is provided for the proposed approach. The experimental results demonstrate that the precision, sensitivity, specificity, and F1-Score of the proposed approach reach 99.11%, 99.88%, 99.42%, and 99.50% respectively. In contrast with Faster R-CNN, the precision, sensitivity, and F1-Score increase by 0.31%, 7.77%, and 4.25% respectively. The comparative experimental results demonstrate that the mean average precision (mAP) of the proposed approach is higher than that of the currently used pest recognition approaches. In addition to reducing the complexity of creating multiple recognition models for different kinds of pests, the proposed model shows promise as an effective means for recognising and monitoring of other targets with similar characteristics, thereby providing theoretical support for ecological informatics in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幽默若男完成签到,获得积分10
1秒前
orixero应助happyccch采纳,获得10
1秒前
2秒前
2秒前
wanci应助xctdyl1992采纳,获得10
2秒前
Dy发布了新的文献求助10
2秒前
lhl发布了新的文献求助30
3秒前
4秒前
平淡冬亦完成签到 ,获得积分10
4秒前
m弟完成签到 ,获得积分10
4秒前
大个应助子小亮采纳,获得10
5秒前
chenyl发布了新的文献求助10
5秒前
6秒前
6秒前
66完成签到,获得积分10
8秒前
9秒前
kid1412完成签到 ,获得积分10
9秒前
10秒前
子小亮完成签到,获得积分10
10秒前
10秒前
Orimo完成签到,获得积分10
11秒前
肥肠的枣糕啊完成签到,获得积分10
12秒前
顺心绾绾完成签到 ,获得积分20
13秒前
青柠完成签到,获得积分10
14秒前
14秒前
吴鸣拭完成签到,获得积分10
14秒前
断章完成签到 ,获得积分10
15秒前
15秒前
手术刀发布了新的文献求助10
16秒前
whuhustwit发布了新的文献求助10
16秒前
8R60d8应助keer采纳,获得10
16秒前
科研通AI2S应助叶雯静采纳,获得10
16秒前
小鱼爱吃肉应助xctdyl1992采纳,获得10
17秒前
南村群童欺我老无力完成签到,获得积分10
18秒前
丘比特应助lycbbgh采纳,获得10
18秒前
Two-Capitals发布了新的文献求助10
18秒前
吴鸣拭发布了新的文献求助10
19秒前
george发布了新的文献求助10
20秒前
赵小满完成签到,获得积分10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Inorganic Chemistry 5th Edition Catherine Housecroft 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357304
求助须知:如何正确求助?哪些是违规求助? 2980799
关于积分的说明 8696190
捐赠科研通 2662452
什么是DOI,文献DOI怎么找? 1457856
科研通“疑难数据库(出版商)”最低求助积分说明 674902
邀请新用户注册赠送积分活动 665934