Recognition and counting of typical apple pests based on deep learning

人工智能 提取器 卷积神经网络 模式识别(心理学) 计算机科学 深度学习 灵敏度(控制系统) 特征(语言学) 工艺工程 电子工程 语言学 工程类 哲学
作者
Tiewei Wang,Longgang Zhao,Baohua Li,Juan Li,Xinwei Li,Wenkai Xu
出处
期刊:Ecological Informatics [Elsevier]
卷期号:68: 101556-101556 被引量:14
标识
DOI:10.1016/j.ecoinf.2022.101556
摘要

The recognition and counting of apple pests sampled by different sex attractants are very important and significant for pest control. Convolutional neural networks (CNNs) are common artificial intelligence algorithms widely used in image recognition and counting. However, because the sizes of different species of pests are different and the densities of pests on the sticky board are sometimes considerable, it is difficult to recognise and count them accurately and efficiently. This study proposes an improved recognition and counting approach based on deep learning with data reorganisation, termed ‘MPest-RCNN’. The contributions herein are twofold: (1) A new structure of Faster R-CNN is proposed by using ResNet101 feature extractor which has higher precision of recognition. (2) We propose a new convolutional network structure with small anchors to extract features such that the recognition accuracy is improved for small pests. We took three typical pests in apple orchards to establish an original data set using sex attractants. The proposed MPest-RCNN model solves the recognition problem of multiple types and sizes of pests by using different sex attractants. Finally, experiments are conducted, and a comparative analysis is provided for the proposed approach. The experimental results demonstrate that the precision, sensitivity, specificity, and F1-Score of the proposed approach reach 99.11%, 99.88%, 99.42%, and 99.50% respectively. In contrast with Faster R-CNN, the precision, sensitivity, and F1-Score increase by 0.31%, 7.77%, and 4.25% respectively. The comparative experimental results demonstrate that the mean average precision (mAP) of the proposed approach is higher than that of the currently used pest recognition approaches. In addition to reducing the complexity of creating multiple recognition models for different kinds of pests, the proposed model shows promise as an effective means for recognising and monitoring of other targets with similar characteristics, thereby providing theoretical support for ecological informatics in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助典雅的钥匙采纳,获得10
刚刚
刚刚
万能图书馆应助冰淇琳采纳,获得10
1秒前
小小富完成签到,获得积分10
1秒前
1秒前
黄婷萱发布了新的文献求助10
1秒前
小蘑菇应助kk采纳,获得10
1秒前
云仄完成签到,获得积分10
1秒前
罗mian发布了新的文献求助10
1秒前
归途发布了新的文献求助10
2秒前
搜集达人应助温柔发卡采纳,获得10
2秒前
落花关注了科研通微信公众号
2秒前
2秒前
3秒前
yyy完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Akim应助陈功城采纳,获得10
3秒前
淡定小白菜完成签到,获得积分20
3秒前
xt_489完成签到,获得积分10
3秒前
碎米花完成签到 ,获得积分20
4秒前
龙晴完成签到,获得积分10
4秒前
章胜超发布了新的文献求助10
5秒前
六根清净完成签到,获得积分20
5秒前
领导范儿应助lsw采纳,获得10
5秒前
欣慰元蝶应助畅快的雁采纳,获得10
5秒前
季季红完成签到,获得积分10
5秒前
血小板发布了新的文献求助10
5秒前
笑场发布了新的文献求助10
6秒前
zhenghua发布了新的文献求助10
6秒前
肉卷发布了新的文献求助10
6秒前
十三完成签到 ,获得积分10
6秒前
黛宝发布了新的文献求助10
6秒前
夭夭完成签到,获得积分10
6秒前
7秒前
xh完成签到,获得积分10
7秒前
DG发布了新的文献求助10
7秒前
六根清净发布了新的文献求助10
8秒前
sun发布了新的文献求助10
8秒前
8秒前
wanci应助小勉采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545653
求助须知:如何正确求助?哪些是违规求助? 4631693
关于积分的说明 14621876
捐赠科研通 4573347
什么是DOI,文献DOI怎么找? 2507486
邀请新用户注册赠送积分活动 1484199
关于科研通互助平台的介绍 1455485