Recognition and counting of typical apple pests based on deep learning

人工智能 提取器 卷积神经网络 模式识别(心理学) 计算机科学 深度学习 灵敏度(控制系统) 特征(语言学) 工艺工程 电子工程 语言学 工程类 哲学
作者
Tiewei Wang,Longgang Zhao,Baohua Li,Juan Li,Xinwei Li,Wenkai Xu
出处
期刊:Ecological Informatics [Elsevier]
卷期号:68: 101556-101556 被引量:14
标识
DOI:10.1016/j.ecoinf.2022.101556
摘要

The recognition and counting of apple pests sampled by different sex attractants are very important and significant for pest control. Convolutional neural networks (CNNs) are common artificial intelligence algorithms widely used in image recognition and counting. However, because the sizes of different species of pests are different and the densities of pests on the sticky board are sometimes considerable, it is difficult to recognise and count them accurately and efficiently. This study proposes an improved recognition and counting approach based on deep learning with data reorganisation, termed ‘MPest-RCNN’. The contributions herein are twofold: (1) A new structure of Faster R-CNN is proposed by using ResNet101 feature extractor which has higher precision of recognition. (2) We propose a new convolutional network structure with small anchors to extract features such that the recognition accuracy is improved for small pests. We took three typical pests in apple orchards to establish an original data set using sex attractants. The proposed MPest-RCNN model solves the recognition problem of multiple types and sizes of pests by using different sex attractants. Finally, experiments are conducted, and a comparative analysis is provided for the proposed approach. The experimental results demonstrate that the precision, sensitivity, specificity, and F1-Score of the proposed approach reach 99.11%, 99.88%, 99.42%, and 99.50% respectively. In contrast with Faster R-CNN, the precision, sensitivity, and F1-Score increase by 0.31%, 7.77%, and 4.25% respectively. The comparative experimental results demonstrate that the mean average precision (mAP) of the proposed approach is higher than that of the currently used pest recognition approaches. In addition to reducing the complexity of creating multiple recognition models for different kinds of pests, the proposed model shows promise as an effective means for recognising and monitoring of other targets with similar characteristics, thereby providing theoretical support for ecological informatics in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee发布了新的文献求助10
刚刚
1秒前
lt发布了新的文献求助10
2秒前
Lqian_Yu完成签到 ,获得积分10
3秒前
SCI66完成签到,获得积分10
6秒前
小胖发布了新的文献求助10
7秒前
Glufo完成签到,获得积分10
8秒前
英姑应助小慧儿采纳,获得10
9秒前
10秒前
领导范儿应助科研通管家采纳,获得10
11秒前
千千沐发布了新的文献求助10
11秒前
Lee完成签到,获得积分10
11秒前
light发布了新的文献求助50
12秒前
qwer发布了新的文献求助50
13秒前
13秒前
优秀的元龙完成签到,获得积分10
15秒前
18秒前
碧蓝平露发布了新的文献求助10
18秒前
凶狠的飞凤完成签到,获得积分10
19秒前
SBoot完成签到,获得积分10
19秒前
20秒前
HAAAPY完成签到,获得积分20
23秒前
keikei发布了新的文献求助10
24秒前
gxc发布了新的文献求助10
25秒前
mao完成签到 ,获得积分10
26秒前
万能图书馆应助牧青采纳,获得30
26秒前
26秒前
科研通AI6.1应助fly圈圈呀采纳,获得10
27秒前
xy发布了新的文献求助10
30秒前
32秒前
陌上尘完成签到,获得积分10
33秒前
37秒前
美海与鱼完成签到,获得积分10
37秒前
LL发布了新的文献求助10
38秒前
keikei完成签到,获得积分10
39秒前
40秒前
科研通AI6.1应助light采纳,获得10
41秒前
43秒前
xy完成签到,获得积分10
46秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872826
求助须知:如何正确求助?哪些是违规求助? 6492621
关于积分的说明 15670004
捐赠科研通 4990251
什么是DOI,文献DOI怎么找? 2690186
邀请新用户注册赠送积分活动 1632687
关于科研通互助平台的介绍 1590578