Recognition and counting of typical apple pests based on deep learning

人工智能 提取器 卷积神经网络 模式识别(心理学) 计算机科学 深度学习 灵敏度(控制系统) 特征(语言学) 工艺工程 电子工程 语言学 工程类 哲学
作者
Tiewei Wang,Longgang Zhao,Baohua Li,Juan Li,Xinwei Li,Wenkai Xu
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:68: 101556-101556 被引量:14
标识
DOI:10.1016/j.ecoinf.2022.101556
摘要

The recognition and counting of apple pests sampled by different sex attractants are very important and significant for pest control. Convolutional neural networks (CNNs) are common artificial intelligence algorithms widely used in image recognition and counting. However, because the sizes of different species of pests are different and the densities of pests on the sticky board are sometimes considerable, it is difficult to recognise and count them accurately and efficiently. This study proposes an improved recognition and counting approach based on deep learning with data reorganisation, termed ‘MPest-RCNN’. The contributions herein are twofold: (1) A new structure of Faster R-CNN is proposed by using ResNet101 feature extractor which has higher precision of recognition. (2) We propose a new convolutional network structure with small anchors to extract features such that the recognition accuracy is improved for small pests. We took three typical pests in apple orchards to establish an original data set using sex attractants. The proposed MPest-RCNN model solves the recognition problem of multiple types and sizes of pests by using different sex attractants. Finally, experiments are conducted, and a comparative analysis is provided for the proposed approach. The experimental results demonstrate that the precision, sensitivity, specificity, and F1-Score of the proposed approach reach 99.11%, 99.88%, 99.42%, and 99.50% respectively. In contrast with Faster R-CNN, the precision, sensitivity, and F1-Score increase by 0.31%, 7.77%, and 4.25% respectively. The comparative experimental results demonstrate that the mean average precision (mAP) of the proposed approach is higher than that of the currently used pest recognition approaches. In addition to reducing the complexity of creating multiple recognition models for different kinds of pests, the proposed model shows promise as an effective means for recognising and monitoring of other targets with similar characteristics, thereby providing theoretical support for ecological informatics in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
无止发布了新的文献求助10
1秒前
dddd完成签到,获得积分10
2秒前
Avie完成签到 ,获得积分10
3秒前
3秒前
几一昂完成签到,获得积分10
3秒前
江城闲鹤发布了新的文献求助10
3秒前
田様应助自由的笑容采纳,获得10
3秒前
哆啦的空间站完成签到,获得积分0
4秒前
曹兰兰发布了新的文献求助10
4秒前
duckspy完成签到 ,获得积分10
5秒前
小坚果发布了新的文献求助10
5秒前
Yuki完成签到,获得积分10
6秒前
Davidjin完成签到,获得积分10
9秒前
9秒前
陈陈完成签到,获得积分10
9秒前
非鱼完成签到,获得积分10
10秒前
科研通AI5应助江城闲鹤采纳,获得10
10秒前
11秒前
四面八方来钱完成签到 ,获得积分10
13秒前
大模型应助典雅的俊驰采纳,获得10
13秒前
111完成签到,获得积分10
14秒前
传奇3应助唐浩采纳,获得10
15秒前
酷波er应助ira采纳,获得10
17秒前
格拉希尔完成签到,获得积分10
17秒前
yongen发布了新的文献求助10
17秒前
18秒前
古夕完成签到,获得积分10
19秒前
李爱国应助曹兰兰采纳,获得10
19秒前
20秒前
默默新波完成签到 ,获得积分10
21秒前
uil发布了新的文献求助10
21秒前
微笑立轩完成签到,获得积分10
21秒前
大力寒荷发布了新的文献求助10
22秒前
111发布了新的文献求助20
23秒前
小城故事和冰雨完成签到,获得积分10
23秒前
23秒前
23秒前
yongen完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044866
求助须知:如何正确求助?哪些是违规求助? 4274363
关于积分的说明 13323824
捐赠科研通 4088132
什么是DOI,文献DOI怎么找? 2236778
邀请新用户注册赠送积分活动 1244134
关于科研通互助平台的介绍 1172157