亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recognition and counting of typical apple pests based on deep learning

人工智能 提取器 卷积神经网络 模式识别(心理学) 计算机科学 深度学习 灵敏度(控制系统) 特征(语言学) 工艺工程 电子工程 语言学 工程类 哲学
作者
Tiewei Wang,Longgang Zhao,Baohua Li,Juan Li,Xinwei Li,Wenkai Xu
出处
期刊:Ecological Informatics [Elsevier]
卷期号:68: 101556-101556 被引量:14
标识
DOI:10.1016/j.ecoinf.2022.101556
摘要

The recognition and counting of apple pests sampled by different sex attractants are very important and significant for pest control. Convolutional neural networks (CNNs) are common artificial intelligence algorithms widely used in image recognition and counting. However, because the sizes of different species of pests are different and the densities of pests on the sticky board are sometimes considerable, it is difficult to recognise and count them accurately and efficiently. This study proposes an improved recognition and counting approach based on deep learning with data reorganisation, termed ‘MPest-RCNN’. The contributions herein are twofold: (1) A new structure of Faster R-CNN is proposed by using ResNet101 feature extractor which has higher precision of recognition. (2) We propose a new convolutional network structure with small anchors to extract features such that the recognition accuracy is improved for small pests. We took three typical pests in apple orchards to establish an original data set using sex attractants. The proposed MPest-RCNN model solves the recognition problem of multiple types and sizes of pests by using different sex attractants. Finally, experiments are conducted, and a comparative analysis is provided for the proposed approach. The experimental results demonstrate that the precision, sensitivity, specificity, and F1-Score of the proposed approach reach 99.11%, 99.88%, 99.42%, and 99.50% respectively. In contrast with Faster R-CNN, the precision, sensitivity, and F1-Score increase by 0.31%, 7.77%, and 4.25% respectively. The comparative experimental results demonstrate that the mean average precision (mAP) of the proposed approach is higher than that of the currently used pest recognition approaches. In addition to reducing the complexity of creating multiple recognition models for different kinds of pests, the proposed model shows promise as an effective means for recognising and monitoring of other targets with similar characteristics, thereby providing theoretical support for ecological informatics in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助小飞采纳,获得10
2秒前
asdfzxcv应助FeiFeiup采纳,获得10
3秒前
沉静的迎荷完成签到 ,获得积分10
5秒前
LIVE完成签到,获得积分10
7秒前
丘比特应助机智小海豚采纳,获得10
8秒前
老实千雁完成签到 ,获得积分10
10秒前
深情安青应助Man采纳,获得10
11秒前
14秒前
小黄是欧皇完成签到,获得积分20
14秒前
14秒前
qwe完成签到 ,获得积分10
17秒前
科研同人完成签到,获得积分10
18秒前
sn完成签到 ,获得积分10
18秒前
19秒前
Akim应助小飞采纳,获得10
21秒前
maggie关注了科研通微信公众号
22秒前
852应助昊昊采纳,获得10
25秒前
森森发布了新的文献求助10
25秒前
搜集达人应助小玉采纳,获得10
25秒前
JIN发布了新的文献求助10
27秒前
彭于晏应助哪位采纳,获得10
30秒前
刘生发布了新的文献求助10
32秒前
赘婿应助小飞采纳,获得10
35秒前
38秒前
搜集达人应助无风风采纳,获得10
41秒前
queen完成签到,获得积分10
42秒前
哪位发布了新的文献求助10
43秒前
在水一方完成签到 ,获得积分0
44秒前
桔梗完成签到 ,获得积分10
44秒前
45秒前
小黄是欧皇关注了科研通微信公众号
48秒前
自信的网络完成签到 ,获得积分10
49秒前
哪位完成签到,获得积分10
51秒前
噫吁嚱完成签到 ,获得积分10
51秒前
英姑应助天真的戾采纳,获得20
51秒前
所所应助小飞采纳,获得10
53秒前
小罗完成签到,获得积分20
54秒前
56秒前
57秒前
坚守完成签到 ,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650563
求助须知:如何正确求助?哪些是违规求助? 4781019
关于积分的说明 15052302
捐赠科研通 4809466
什么是DOI,文献DOI怎么找? 2572282
邀请新用户注册赠送积分活动 1528450
关于科研通互助平台的介绍 1487286