等变映射
扩散
范畴变量
计算机科学
概率逻辑
计算
欧几里德几何
生成语法
数学
算法
理论计算机科学
纯数学
人工智能
机器学习
物理
几何学
量子力学
作者
Emiel Hoogeboom,Victor Garcia Satorras,Clement Vignac,Max Welling
出处
期刊:Cornell University - arXiv
日期:2022-03-31
被引量:1
标识
DOI:10.48550/arxiv.2203.17003
摘要
This work introduces a diffusion model for molecule generation in 3D that is equivariant to Euclidean transformations. Our E(3) Equivariant Diffusion Model (EDM) learns to denoise a diffusion process with an equivariant network that jointly operates on both continuous (atom coordinates) and categorical features (atom types). In addition, we provide a probabilistic analysis which admits likelihood computation of molecules using our model. Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
科研通智能强力驱动
Strongly Powered by AbleSci AI